Forthcoming

Optimization of the bovine collagen hydrolysis process and evaluation of its techno-functional and antioxidant properties

Authors

  • Raúl Reyes-Bautista Tecnológico Nacional de México/ITS de Purísima del Rincón, Laboratorio de Bioprocesos, División de Ingeniería Bioquímica, boulevard del Valle núm. 2301, Guardarrayas, Purísima del Rincón, Guanajuato, México, C. P. 36425.
  • Erik Gustavo Tovar-Pérez Universidad Autónoma de Querétaro, campus Amealco, Facultad de Ingeniería, Amealco de Bonfil, Querétaro, México, C. P. 76850. https://orcid.org/0000-0002-4998-4480
  • Gustavo Hernández-Mendoza Tecnológico Nacional de México/ITS de Purísima del Rincón, Laboratorio de Bioprocesos, División de Ingeniería Bioquímica, boulevard del Valle núm. 2301, Guardarrayas, Purísima del Rincón, Guanajuato, México, C. P. 36425. https://orcid.org/0000-0002-5564-4853
  • Luis Alberto Reyes-Nava Universidad de Guadalajara, Centro Universitario del Sur, Departamento de Ciencias de la Naturaleza, Ciudad Guzmán, Jalisco, México, C. P. 49000. https://orcid.org/0000-0001-9828-7430
  • Jorge Enrique Pliego-Sandoval Universidad de Guadalajara, Centro Universitario del Sur, Departamento de Ciencias de la Naturaleza, Ciudad Guzmán, Jalisco, México, C. P. 49000.

DOI:

https://doi.org/10.29059/cienciauat.v20i1.2007

Keywords:

hydrolyzed collagen, degree of hydrolysis, techno-functional properties, process optimization, antioxidant activity

Abstract

Collagen is a protein abundant in vertebrate organisms. It is part of connective tissues such as skin, joints, ligaments, and bones. To enhance its techno-functional characteristics, namely solubility, viscosity, emulsification, and foaming capacity, it can undergo chemical and enzymatic hydrolysis. This process unveils specific peptide sequences with demonstrable bioactive functions, including antioxidant, antihypertensive, and antidiabetic effects. The present paper had a twofold purpose. Firstly, it aimed at optimizing the enzymatic hydrolysis of bovine collagen using commercial proteases. Secondly, it intended to assess the resulting products in terms of their techno-functional and antioxidant properties. Hydrolysis optimization was conducted using response surface methodology (RSM) with a Central Composite Design. Proximate analysis of the raw material indicated a high protein content (88 %). The optimization process indicated an extensive hydrolysis level (76.38 %, P ≤ 0.05) for the PAL® enzyme, with an E/S ratio of 1.43 UN/g within a 23.75 h period. The techno-functional properties were positively correlated (P ≤ 0.05) with the hydrolysis degree: 95.02% with solubility (pH 9), and 48% and 34% with capacity and emulsification stability respectively. Conversely, foaming capacity of emulsification declined with increased hydrolysis when the HT proteolytic® enzyme was applied, resulting in a 47 % reduction in foam stability and a 26 % decrease in foam volume. The antioxidant capacity of hydrolyzed collagen (24 h) increased significantly (P ≤ 0.05), showing a 62.38 % value (DPPH) and 0.39 UA700 nm (reduction power) employing the PAL® enzyme and an 80.55 % value (ABTS) employing the HT proteolytic® enzyme. Overall, the optimization of enzymatic collagen hydrolysis enhanced both the techno-functional (solubility and emulsification) and antioxidant properties of the final hydrolysates.

References

Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256-1262. https://doi.org/10.1021/jf60226a042 DOI: https://doi.org/10.1021/jf60226a042

Aguirre-Cruz, G., León-López, A., Cruz-Gómez, V., Jiménez-Alvarado, R., & Aguirre-Álvarez, G. (2020). Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants, 9(2), 181. https://doi.org/10.3390/antiox9020181 DOI: https://doi.org/10.3390/antiox9020181

Ahmad, M. I., Li, Y., Pan, J., Liu, F., Dai, H., Fu, Y., Huang, T., Farooq, S., & Zhang, H. (2024). Collagen and gelatin: Structure, properties, and applications in food industry. International Journal of Biological Macromolecules, 254, 128037. https://doi.org/10.1016/j.ijbiomac.2023.128037 DOI: https://doi.org/10.1016/j.ijbiomac.2023.128037

Anzani, C., Álvarez, C., & Mullen, A. M. (2020). Assessing the effect of Maillard reaction with dextran on the techno-functional properties of collagen-based peptides obtained from bovine hides. LWT, 118, 108800. https://doi.org/10.1016/j.lwt.2019.108800 DOI: https://doi.org/10.1016/j.lwt.2019.108800

AOAC, Association of Official Analytical Chemists (2000). Official Methods of Analysis (Seventeenth edition). AOAC International.

Barzideh, Z., Abd-Latif, A., Gan, C. Y., Abedin, Md. Z., & Alias, A. K. (2014). ACE Inhibitory and Antioxidant Activities of Collagen Hydrolysates from the Ribbon Jellyfish (Chrysaora sp.). Food Technology and Biotechnology, 52(4), 495-504. https://doi.org/10.17113/ftb.52.04.14.3641 DOI: https://doi.org/10.17113/ftb.52.04.14.3641

Bhuimbar, M. V., Jalkute, C. B., Bhagwat, P. K., & Dandge, P. B. (2024). Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. Journal of Bioscience and Bioengineering, 138(1), 21-28. https://doi.org/10.1016/j.jbiosc.2024.03.003 DOI: https://doi.org/10.1016/j.jbiosc.2024.03.003

Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & G. Sotelo, C. (2019). Collagen Extraction Optimization from the Skin of the Small-Spotted Catshark (S. canicula) by Response Surface Methodology. Marine Drugs, 17(1), 40. https://doi.org/10.3390/md17010040 DOI: https://doi.org/10.3390/md17010040

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999

Chi, C., Hu, F., Li, Z., Wang, B., & Luo, H. (2016). Influence of Different Hydrolysis Processes by Trypsin on the Physicochemical, Antioxidant, and Functional Properties of Collagen Hydrolysates from Sphyrna lewini, Dasyatis akjei, and Raja porosa. Journal of Aquatic Food Product Technology, 25(5), 616-632. https://doi.org/10.1080/10498850.2014.898004 DOI: https://doi.org/10.1080/10498850.2014.898004

Chi, C. F., Cao, Z. H., Wang, B., Hu, F. Y., Li, Z. R., & Zhang, B. (2014). Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight. Molecules, 19(8), 11211–11230. https://doi.org/10.3390/molecules190811211 DOI: https://doi.org/10.3390/molecules190811211

Deng, G., Huang, K., Jiang, X., Wang, K., Song, Z., Su, Y., Li, C., Zhang, S., Wang, S., & Huang, Y. (2023). Developments for collagen hydrolysates as a multifunctional anti-oxidant in biomedical domains. Collagen and Leather, 5(1), 26. https://doi.org/10.1186/s42825-023-00131-9 DOI: https://doi.org/10.1186/s42825-023-00131-9

González-Serrano, D. J., Hadidi, M., Varcheh, M., Jelyani, A. Z., Moreno, A., & Lorenzo, J. M. (2022). Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants, 11(3), 509. https://doi.org/10.3390/antiox11030509 DOI: https://doi.org/10.3390/antiox11030509

Hema, G. S., Joshy, C. G., Shyni, K., Chatterjee, N. S., Ninan, G., & Mathew, S. (2017). Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. Journal of Food Science and Technology, 54(2), 488-496. https://doi.org/10.1007/s13197-0172490-2 DOI: https://doi.org/10.1007/s13197-017-2490-2

Hong, G. P., Min, S. G., & Jo, Y. J. (2019). Anti-Oxidative and Anti-Aging Activities of Porcine By-Product Collagen Hydrolysates Produced by Commercial Proteases: Effect of Hydrolysis and Ultrafiltration. Molecules, 24(6), 1104. https://doi.org/10.3390/molecules24061104 DOI: https://doi.org/10.3390/molecules24061104

Hu, G., Li, X., Su, R., Corazzin, M., Liu, X., Dou, L., Sun, L., Zhao, L., Su, L., Tian, J., & Jin, Y. (2023). Effects of ultrasound on the structural and functional properties of sheep bone collagen. Ultrasonics Sonochemistry, 95, 106366. https://doi.org/10.1016/j.ultsonch.2023.106366 DOI: https://doi.org/10.1016/j.ultsonch.2023.106366

Lambré, C., Barat-Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Herman, L., Aguilera, J., Andryszkiewicz, M., Fernandez-Fraguas, C., Liu, Y., & Chesson, A. (2023). Safety evaluation of the food enzyme bacillolysin from the non-genetically modified Bacillus amyloliquefaciens strain HPN 131. EFSA Journal, 21(11), 1-12. https://doi.org/10.2903/j.efsa.2023.8390 DOI: https://doi.org/10.2903/j.efsa.2023.8390

León-López, A., Fuentes-Jiménez, L., Hernández-Fuentes, A. D., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2019). Hydrolysed Collagen from Sheep-skins as a Source of Functional Peptides with Antioxidant Activity. International Journal of Molecular Sciences, 20(16), 3931. https://doi.org/10.3390/ijms20163931 DOI: https://doi.org/10.3390/ijms20163931

Liang, Q., Wang, L., He, Y., Wang, Z., Xu, J., & Ma, H. (2014). Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. Journal of Functional Foods, 11, 493-499. https://doi.org/10.1016/j.jff.2014.08.004 DOI: https://doi.org/10.1016/j.jff.2014.08.004

Montgomery, D. C. (2020). Design and Analysis of Experiments (10th edition). Wiley.

Munteanu, I. G. & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380 DOI: https://doi.org/10.3390/ijms22073380

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Fourth edition). Wiley series in probability and statistics.

Nguyen, B. C., Kha, T. C., Nguyen, K. H. N., & Nguyen, H. M. X. (2021). Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (Thunnus albacares) by response surface methodology and properties of hydrolyzed collagen. Journal of Food Processing and Preservation, 45(4). https://doi.org/10.1111/jfpp.15319 DOI: https://doi.org/10.1111/jfpp.15319

Nuñez, S. M., Cárdenas, C., Pinto, M., Valencia, P., Cataldo, P., Guzmán, F., & Almonacid, S. (2020). Bovine skin gelatin hydrolysates as potential substitutes for polyphosphates: The role of degree of hydrolysis and pH on water-holding capacity. Journal of Food Science, 85(7), 1988-1996. https://doi.org/10.1111/1750-3841.15299 DOI: https://doi.org/10.1111/1750-3841.15299

Philipps-Wiemann, P. (2018). Proteases—general aspects. In Nunes, C.S. and Kumar, V. (Ed.), Enzymes in Human and Animal Nutrition (pp. 257-266). Elsevier. https://doi.org/10.1016/B978-0-12-8054192.00012-5 DOI: https://doi.org/10.1016/B978-0-12-805419-2.00012-5

Qi, L., Zhang, H., Guo, Y., Liu, H., & Zhang, C. (2024). Preparation, characterization and antioxidant activity analysis of three Maillard glycosylated bonecollagen hydrolysates from chicken, porcine and bovine. Food Science and Human Wellness, 13(4), 2002–2013. https://doi.org/10.26599/FSHW.2022.9250166 DOI: https://doi.org/10.26599/FSHW.2022.9250166

Schmidt, M. M., Fontoura, A. M. da, Vidal, A. R., Dornelles, R. C. P., Kubota, E. H., Mello, R. de O., Cansian, R. L., Demiate, I. M., & Oliveira, C. S. (2020). Characterization of hydrolysates of collagen from mechanically separated chicken meat residue. Food Science and Technology, 40(suppl 1), 355-362. https://doi.org/10.1590/fst.14819 DOI: https://doi.org/10.1590/fst.14819

Silvipriya, K., Kumar, K., Bhat, A., Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science, 123-127. https://doi.org/10.7324/JAPS.2015.50322 DOI: https://doi.org/10.7324/JAPS.2015.50322

Song, Y., Fu, Y., Huang, S., Liao, L., Wu, Q., Wang, Y., Ge, F., & Fang, B. (2021a). Identification and anti-oxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chemistry, 349, 129143. https://doi.org/10.1016/j.foodchem.2021.129143 DOI: https://doi.org/10.1016/j.foodchem.2021.129143

Song, Z., Liu, H., Chen, L., Chen, L., Zhou, C., Hong, P., & Deng, C. (2021b). Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chemistry, 340, 128139. https://doi.org/10.1016/j.foodchem.2020.128139 DOI: https://doi.org/10.1016/j.foodchem.2020.128139

Sosulski, F. W. & Imafidon, G. I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. Journal of Agricultural and Food Chemistry, 38(6), 1351-1356. https://doi.org/10.1021/jf00096a011 DOI: https://doi.org/10.1021/jf00096a011

Sun, S., Gao, Y., Chen, J., & Liu, R. (2022). Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chemistry, 378, 132089. https://doi.org/10.1016/j.foodchem.2022.132089 DOI: https://doi.org/10.1016/j.foodchem.2022.132089

Tawalbeh, D., Ahmad, W. A. N. W., & Sarbon, N. M. (2023). Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Reviews International, 39(8), 5423-5445. https://doi.org/10.1080/87559129.2022.2069258 DOI: https://doi.org/10.1080/87559129.2022.2069258

Tawalbeh, D., Kha’sim, M. I., Mhd Sarbon, N., & Sarbon, N. M. (2025). Techno-Functional and Bio-activity Properties of Collagen Hydrolysate and Peptide: A Review. Food Reviews International, 1-29. https://doi.org/10.1080/87559129.2025.2450052 DOI: https://doi.org/10.1080/87559129.2025.2450052

Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology, 108, 27-39. https://doi.org/10.1016/j.tifs.2020.12.002 DOI: https://doi.org/10.1016/j.tifs.2020.12.002

Vidal, A. R., Cansian, R. L., Mello, R. de O., Demiate, I. M., Kempka, A. P., Dornelles, R. C. P., Rodriguez, J. M. L., & Campagnol, P. C. B. (2022). Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants, 11(6), 1173. https://doi.org/10.3390/antiox11061173 DOI: https://doi.org/10.3390/antiox11061173

Vidal, A. R., Duarte, L. P., Schmidt, M. M., Cansian, R. L., Fernandes, I. A., de-Oliveira-Mello, R., Demiate, I. M., & Dornelles, R. C. P. (2020). Extraction and characterization of collagen from sheep slaughter by-products. Waste Management, 102, 838-846. https://doi.org/10.1016/j.wasman.2019.12.004 DOI: https://doi.org/10.1016/j.wasman.2019.12.004

Vogelsang-O’dwyer, M., Sahin, A. W., Arendt, E. K., & Zannini, E. (2022). Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods, 11(9), 1307. https://doi.org/10.3390/foods11091307 DOI: https://doi.org/10.3390/foods11091307

Wang, B., Wang, Y. M., Chi, C. F., Luo, H. Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea). Marine Drugs, 11(11), 4641-4661. https://doi.org/10.3390/md11114641 DOI: https://doi.org/10.3390/md11114641

Wolf, K. L., Sobral, P. J. A., & Telis, V. R. N. (2009). Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocolloids, 23(7), 1886-1894. https://doi.org/10.1016/j.foodhyd.2009.01.013 DOI: https://doi.org/10.1016/j.foodhyd.2009.01.013

Wulandari, D., Triatmojo, S., Erwanto, Y., & Pranoto, Y. (2016). Physicochemical Properties and Amino Acid and Functional Group Profiles of Gelatin Extracted from Bovine Split Hide Cured by Acid. Pakistan Journal of Nutrition, 15(7), 655–661. https://doi.org/10.3923/pjn.2016.655.661 DOI: https://doi.org/10.3923/pjn.2016.655.661

Xie, Z., Wang, X., Yu, S., He, M., Yu, S., Xiao, H., & Song, Y. (2021). Antioxidant and functional properties of cowhide collagen peptides. Journal of Food Science, 86(5), 1802-1818. https://doi.org/10.1111/1750-3841.15666 DOI: https://doi.org/10.1111/1750-3841.15666

Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., Chen, Y., Huang, F., Yang, Z., Tang, Y., & Ding, G. (2018). Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Marine Drugs, 16(1), 29. https://doi.org/10.3390/md16010029 DOI: https://doi.org/10.3390/md16010029

Yu, P., & Chen, H. (2014). Optimization of Conditions for Enzymatic Production of Collagen Hydrolysates from a Low-Value Acaudina molpadioides and Their Activities. Journal of Food Biochemistry, 38(2), 227-235. https://doi.org/10.1111/jfbc.12041 DOI: https://doi.org/10.1111/jfbc.12041

Zamorano-Apodaca, J. C., García-Sifuentes, C. O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S. M., & Lugo-Sánchez, M. E. (2020). Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chemistry, 331, 127350. https://doi.org/10.1016/j.foochem.2020.127350 DOI: https://doi.org/10.1016/j.foodchem.2020.127350

Zhang, Q., Dhir, A., & Kaur, P. (2022). Circular economy and the food sector: A systematic literature review. Sustainable Production and Consumption, 32, 655-668. https://doi.org/10.1016/j.spc.2022.05.010 DOI: https://doi.org/10.1016/j.spc.2022.05.010

Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J. M., & Lin, L. (2016a). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience, 13, 41-48. https://doi.org/10.1016/j.fbio.2015.12.005 DOI: https://doi.org/10.1016/j.fbio.2015.12.005

Zhang, Y., Ma, L., & Otte, J. (2016b). Optimization of Hydrolysis Conditions for Production of Angiotensin-Converting Enzyme Inhibitory Peptides from Basa Fish Skin Using Response Surface Methodology. Journal of Aquatic Food Product Technology, 25(5), 684-693. https://doi.org/10.1080/10498850.2014.919049 DOI: https://doi.org/10.1080/10498850.2014.919049

Zhang, Y., Olsen, K., Grossi, A., & Otte, J. (2013). Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 141(3), 2343-2354. https://doi.org/10.1016/j.foodchem.2013.05.058 DOI: https://doi.org/10.1016/j.foodchem.2013.05.058

Published

2025-09-15

How to Cite

Reyes-Bautista, R., Tovar-Pérez, E. G., Hernández-Mendoza, G., Reyes-Nava, L. A., & Pliego-Sandoval, J. E. (2025). Optimization of the bovine collagen hydrolysis process and evaluation of its techno-functional and antioxidant properties. CienciaUAT, 20(1). https://doi.org/10.29059/cienciauat.v20i1.2007
Received 2025-03-04
Accepted 2025-09-09
Published 2025-09-15

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.