Utilization of microorganisms from extreme environments and their products in biotechnological development

Authors

  • Rosa María Oliart-Ros Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo núm. 2779, Veracruz, Veracruz, México, C.P. 91860.
  • María Guadalupe Sánchez-Otero Universidad Veracruzana, Facultad de Bioanálisis, Carmen Serdán e Iturbide S/N, col. Flores Magón, Veracruz, Veracruz, México, C.P. 91700.
  • Ángeles Manresa-Presas Universitat de Barcelona, Facultat de Farmacia, Unitat de Microbiologia, Av. Joan XXIII, 27-31, E-08028, Barcelona, España

DOI:

https://doi.org/10.29059/cienciauat.v11i1.556

Keywords:

extremophiles, microorganisms, biotechnology.

Abstract

Biotechnology represents a viable alternative for a sustainable industrial development, as it provides the tools needed to adapt and modify organisms, products systems, and processes to improve industrial activity. This makes it more profitable, diverse and friendly with the environment than the traditional chemical and physical processes. In this regard, extremophilic microorganisms represent the most promising option as a source of biomolecules with biocatalytic capacity, able to withstand drastic process conditions. In addition, their full-scale use may lead to industrial sustainability.

Author Biography

María Guadalupe Sánchez-Otero, Universidad Veracruzana, Facultad de Bioanálisis, Carmen Serdán e Iturbide S/N, col. Flores Magón, Veracruz, Veracruz, México, C.P. 91700.

Profesora de Tiempo Completo. Laboratorio de Química y Bioetcnología.
Facultad de Bioanálisis

References

Antranikian, G., Vorgias, C. E., and Bertoldo, C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Advances in Biochemical Engineering/Biotechnology. 96: 219-262.

Bonaterra, A., Camps, J., and Montesinos, E. (2005). Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS microbiology letters. 250(1): 1-8.

Canganella, F. and Wiegel, J. (2011). Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften. 98(4): 253-279.

Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., and Ros, R. M. (2005). Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology. 37(6): 648-654.

Cavicchioli, R., Charlton, T., Ertan, H., Omar, S. M., Siddiqui, K. S., and Williams, T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial biotechnology. 4(4): 449-460.

Demain, A. L. and Adrio, J. L. (2008). Contributions of microorganisms to industrial biology. Molecular Biotechnology. 38(1): 41-55.

Eijsink, V. G. H., Björk, A., Gaseidnes, S., Sirevag, B., Syntad, B., Van-Den-Burg, G., and Vriend, G. (2004). Rational engineering of enzyme stability. Journal of Biotechnology. 113(1): 105-120.

Espinosa-Luna, G., Sánchez-Otero, M. G., Quintana-Castro, R., Matus-Toledo, R. E., and Oliart-Ros, R. M. (2016). Gene Cloning and Characterization of the Geobacillus thermoleovorans CCR11 Carboxylesterase CaesCCR11, a New Member of Family XV. Molecular biotechnology. 58(1): 37-46.

Ferrer, M., Golyshina, O., Beloqui, A., and Golyshin, P. N. (2007). Mining enzymes from extreme environments. Current Opinion in Microbiology. 10(3): 207–214.

Frias, A., Manresa, A., de-Oliveira, E., López-Iglesias, C., and Mercadé, E. (2010). Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microbiology Ecology. 59(3): 476-486.

Freitas, F., Alves, V. D., and Reis, M. A. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology. 29(8): 388-398.

Gavrilescu, M. and Chisti, Y. (2005). Biotechnology a sustainable alternative for chemical industry. Biotechnology Advances. 23(7): 471–499.

Gomes, J. and Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology. 42(4): 223-225.

Gotor-Fernández, V., Brieva, R., and Gotor, V. (2006). Lipases: useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic. 40(3): 111–120.

Haki, G. D. and Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology. 89(1): 17-34.

Hasan, F., Shah, A. A., and Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology. 39(2): 235–251.

Hasan, F., Shah, A. A., Javed, S., and Hameed, A. (2010). Enzymes used in detergents: lipases. African Journal of Biotechnology. 9(31): 4836-4844.

Hezayen, F. F., Rehm, B. H. A., Eberhardt, R., and Stein-büchel, A. (2000). Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Applied Microbiology and Biotechnology. 54(3): 319-325.

Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews. 63(4): 735–750.

Hough, D. W. and Danson, M. J. (1999). Extremozymes. Current Opinion in Chemical Biology. 3(1): 39-46.

Jia, B., Cheong, G. W., and Zhang, S. (2013). Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles. 17(2): 193-203.

Kennedy, J., O’Leary, N. D., Kiran, G. S., Morrissey, J. P., O’Gara, F., Selvin J., and Dobson, A. D. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology. 111(4): 787-99.

Khire, J. M. (2010). Bacterial surfactants and their role in Microbial Enhanced Oil Recovery (MEOR). En R. Sen (Ed.), Biosurfactants. Advances in experimental medicine and biology series. (pp. 146-157). USA: Springer.

Kunioka, M. (1997). Biosynthesis and chemical reaction of poly (amino acid)s from microorganisms. Applied Microbiology and Biotechnology. 47(5): 469-475.

Lei, H. Y. and Chang, C. P. (2007). Induction of autophagy by concanavalin A and its application in antitumor therapy. Autophagy. 3(4): 402-404.

Lenzen, G. and Schwarz, T. (2006). Extremolytes: natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology. 72(4): 623-634.

Littlechild, J. A. (2015). Archaeal enzymes and applications in industrial biocatalysts. Archaea. 2015: 1-10.

Madigan, M. T. and Marrs, B. L. (1997). Extremophiles. Scientific. American. 276: 82–87.

Madigan, M. T., Martinko, J. M., Stahl, D., and Clark, D. P. (2003). Brock biology of microorganisms. USA: Pearson Education, Inc. 694 Pp.

Margesin, R. and Schinner, F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 5(2): 73-83.

McMahon, S. and Parnell, J. (2014). Weighing the deep continental biosphere. FEMS Microbial Ecology. 87(1): 113-20.

Miranda-Tello, E., Fardeau, M. L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J. L., ..., and Ollivier, B. (2004). Petrotoga mexicana sp. nov. a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. International Journal of Systematic and Evolutionary Microbiology. 54(1): 169–174.

ONU, Organización de las Naciones Unidas (1992). Convenio sobre Diversidad Biológica de 1992. [En línea]. Disponible en: http://www.cbd.int/doc/legal/cbd-es.pdf. Fecha de consulta: 2 de septiembre de 2014.

Otero, J. M. and Nielsen, J. (2010). Industrial Systems Biology. Biotechnology and Bioengineering. 105(3): 439-460.

Pinzón-Martínez, D. L., Rodríguez-Gómez, C., Miñana-Galbis, D., Valerio-Alfaro, G., and Oliart-Ros, R. M. (2010). Thermophilic bacteria from Mexican thermal environments: Isolation and potential applications. Environmental Technology. 31(8-9): 957-966.

Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G., García, H.S., Oliart-Ros, R. (2009). Gene cloning, expression and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Molecular biotechnology. 42(1): 75-83.

Reed, C. J., Lewis, H., Trejo, E., Winston, V., and Evilia, C. (2013). Protein adaptations in archaeal extremophiles. Archaea. 2013: 1-14.

Rothschild, L. J. and Mancinnelli, R. L. (2001). Life in extreme environments. Nature. 409(6823): 1092-1101.

Ruiz-Romero, E., Alcántara-Hernández, R., Cruz-Mondragon, C., Marsch, R., Luna-Guido, M. L., and Dendooven, L. (2009). Denitrification in extreme alkaline saline soils of the former lake Texcoco. Plant and Soil. 319(1-2): 247-257.

Sánchez-Otero, M. G., Valerio-Alfaro, G., Garcia-Galindo, H. S., and Oliart-Ros, R. M. (2008). Immobilization in the presence of Triton X-100: modifications in activity and thermostability of Geobacillus thermoleovorans CCR11 lipase. Journal of industrial microbiology & biotechnology. 35(12): 1687-1693.

Sánchez-Otero, M. G., Quintana-Castro, R., Mora-González, P., Márquez-Molina, O., Valerio-Alfaro, G., and Oliart-Ros, R. M.(2010). Enzymatic reactions and synthesis of n-butyl caproate: esterification, transesterification and aminolysis using a recombinant lipase from Geobacillus thermoleovorans CCR11. Environmental Technology. 31(10): 1101-1106.

Sánchez-Otero, M. G., Ruiz-López, I. I., Avila-Nieto, D. E., and Oliart-Ros, R. M. (2011). Significant improvement of Geobacillus thermoleovorans CCR11 thermoalkalophilic lipase production using Response Surface Methodology. New Biotechnology. 28(6): 761-766.

Sára, M., Egelseer, E. M., Huber, C., Ilk, N., Pleschberger, M., Pum, D., and Sleytr, U. B. (2006). S-layer proteins: potential application in nano (bio)technology. En B. H. Rehn (Ed.), Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures (pp. 307-338). U.K.: Horizon Scientific Press.

Sarmiento, F., Peralta, R., and Blamey, J. M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology. 3: 148.

Sauer, T. and Gallinski, E. A. (1998). Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnology and Bioengineering. 57(3): 306-313.

Simon, R. C., Mutti, F. G., and Kroutil, W. (2013). Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discovery Today: Technologies. 10(1): e37-e44.

Singh, B. K. (2010). Exploring microbial diversity for biotechnology: the way forward. Trends in Biotechnology. 28(3): 111-116.

Souza, V., Espinosa-Asuar, L., Escalante, A. E., Eguiarte, L. E., Farmer, J., Forney, L., …, and Elser, J. J. (2006). An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy. 103(17): 6565–6570.

Squillaci, G., Finamore, R., Diana, P., Restaino, O. F., Schiraldi, C., Arbucci, S., …, and Morana, A. (2016). Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Applied Microbiology and Biotechnology. 100(2): 613-623.

Stewart, E. J. (2012). Growing unculturable bacteria. Journal of bacteriology. 194(16): 4151-4160.

Tang, W. L. and Zhao, H. (2009). Industrial biotechnology: Tools and applications. Journal Biotechnology. 4(12): 1725–1739.

Valenzuela-Encinas, C., Neria-González, I., Alcántara-Hernández, R. J., Enríquez-Aragón, J. A., Estrada-Alvarado, I., Hernández-Rodríguez, C., …, and Marsch, R. (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles. 12(2): 247-254.

Van-Den-Burg, B. (2003). Extremophiles as a source for novel enzymes. Current opinion in microbiology. 6(3): 213-218.

Wiegel, J. and Kevbrin, V. V. (2004). Alkalithermophiles. Biochemical Society Transactions. 32(2): 193-198.

Published

2016-08-31

How to Cite

Oliart-Ros, R. M., Sánchez-Otero, M. G., & Manresa-Presas, Ángeles. (2016). Utilization of microorganisms from extreme environments and their products in biotechnological development. CienciaUAT, 11(1), 79-90. https://doi.org/10.29059/cienciauat.v11i1.556

Issue

Section

Biotechnology and Agricultural Sciences