Effect of frying fat substitution by vegetable oil and energy concentration on diets for productive performance of broilers

Authors

  • Jaime Salinas-Chavira Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.
  • Héctor Manuel Orduña-Hernández Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.
  • Martín Francisco Montaño-Gómez Universidad Autónoma de Baja California. Instituto de Investigaciones en Ciencias Veterinarias, km 3.5 carretera San Felipe, Fracc. Campestre, Mexicali, Baja California, México, C.P. 21386.
  • Fidel Infante-Rodríguez Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.
  • Olga Maritza Manríquez-Núñez Universidad Autónoma de Baja California. Instituto de Investigaciones en Ciencias Veterinarias, km 3.5 carretera San Felipe, Fracc. Campestre, Mexicali, Baja California, México, C.P. 21386.
  • María de la Luz Vázquez-Sauceda Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.
  • Rolando Yado-Puente Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.

DOI:

https://doi.org/10.29059/cienciauat.v10i2.711

Keywords:

source of lipids, energy concentration, broilers, growth performance.

Abstract

Lipids are often added to the diet of broilers in order to improve their productive efficiency. The most widely used variety of lipids is frying fat (FF), usually recycled from restaurants, as its cost is lower than that of vegetable oil (VO). The aim of this study was to evaluate the effect of FF substitution by VO in standard (SED) and high energy (HED) diets on broiler’s growth performance. To that aim, a total of 200 one-day-old mixed ROSS broilers (37.2 g ± 0.89 g) were fed during 42 d with two phases (starting and finishing) of 21 d each. The experimental design in each phase was completely randomized with 4 treatments with 2 x 2 factorial arrangement with the lipid source (FF and VO), the energy levels (SED and HED), and their interaction as main effects. The metabolizable energy (ME) in the starting phase was 2 994 kcal/kg and 3013 kcal/kg, and in the finishing phase was 3 081 kcal/kg and 3 111 kcal /kg in SED and HED, respectively. The lipid source (VO vs FF) did not influence (P > 0.05) on the studied variables. In the starting phase, broilers fed with the HED gained more weight and showed better feed conversion (P < 0.05) than birds in SED, while feed intake was similar (P > 0.05) among broilers in two diets. For the finishing phase, broilers fed with the HED gained more body weight (P < 0.05) with higher feed intake (P < 0.05) than birds fed with the SED; no effect of energy concentration on feed conversion (P > 0. 05) was observed. It was concluded that lipid source did not influence on productive parameters, but the increase in energy concentration significantly improved the productive performance of broilers.

Archive XML (SciELO)

Author Biography

Jaime Salinas-Chavira, Universidad Autónoma de Tamaulipas. Facultad de Medicina Veterinaria y Zootecnia, km 5 carretera Ciudad Victoria a Ciudad Mante, Ciudad Victoria, Tamaulipas, México, C.P. 87000.

Profesor

Nutricion Animal

 

References

Alaeldein, M. A., Fuad, S. A., Lemme, H. A., and Zakaria, H. (2014). The relationship between guanidino acetic acid and metabolizable energy level of diets on performance of broiler chickens. Italian Journal of Animal Science. 13(3): 548-556.

Branson, A. and Hernández, G. (2012). Mexico-Poultry and Products Semi-annual Sector Integration and Strong Demand Continue, in Global Agricultural Information Network. [En línea]. Disponible en: http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Poultry%20and%20Products%20Semi-annual_Mexico%20City_Mexico_3-20-2012.pdf. Fecha de consulta: 16 de octubre de 2015.

Billek, G. (2000). Health aspects of thermoxidized oils and fats. European Journal of Lipid Science and Technology. 102: 587-593.

Díaz, O. E. (2012). Grasa amarilla y aceite de palma en un mismo tanque, en Engormix. [En línea]. Disponible en: http://agrinews.es/2013/09/04/entendiendo-la-eficacia-de-la-mezcla-de-aceites-y-grasas-en-la-alimentacion-avicola/. Fecha de consulta: 1 de febrero de 2015.

Fernández, A. (2013). El por qué de la eficacia de la mezcla de grasas y aceites en la alimentación avícola. [En línea]. Disponible en: http://agrinews.es/2013/09/04/entendiendo-la-eficacia-de-la-mezcla-de-aceites-y-grasas-en-la-alimentacion-avicola/. Fecha de consulta: 2 de febrero de 2015.

Freeman, C. P. (1976). Digestion and absorption of fat. En K.N. Bookman and B.M. Freeman (Ed.), Digestion in the fowl (pp. 117-142). Edinburgh, UK. British Poultry Science.

Garrett, R. L. and Young, R. J. (1975). Effect of micelle formation on the absorption of neutral and fatty acids by the chicken. Journal of Nutrition. 105(7): 827-838.

Itzá-Ortiz, M. F., López-Coello, C., Ávila-González, E., Gómez-Rosales, S., Arce-Menocal, J., and Velásquez-Madrazo, P. A. (2008). Effect of energy source and level on the length of intestinal villi, immune response and the production performance in broilers. Veterinaria México. 39(4): 357-376.

Jayalakshmi, C. P. and Sharma, J. D. (1986). Effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on rat erythrocytes. Environ Research. 41(1): 235-238.

Kahl, R. and Kappus, H. (1993). Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch. 196(4): 329-338.

Lamela, F. M. (2005). El Mercado de los Aceites Vegetales en la Comunidad de Madrid. Situación y líneas de mejora, en Documentos Técnicos de Salud Pública. [En línea]. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=apz. Fecha de consulta 1 de febrero de 2015.

Mack, J. O. (2005). Impacto de la Nutrición de Pollos de Engorde sobre el Medio Ambiente. [En línea]. Disponible en: http://www.engormix.com/MA-avicultura/nutricion/articulos/impacto-nutricion-pollos-engorde-t388/141-p0.htm. Fecha de consulta: 2 de febrero de 2015.

Marcu, A., Vacaru-Opris, I., Marcu, A., Nicula, M., Dronca, D., and Kelciov, B. (2012). Effect of Different Levels of Dietary Protein and Energy on the Growth and Slaughter Performance at, Hybro PN+” Broiler Chickens.Animal Science and Biotechnologies. 45(2): 424-431.

Monroy-Torres, R., Linares-Segovia, B., y Ramírez-Gómez, X. S. (2015). Desarrollo de una técnica para la detección in vitro de la presencia de antibióticos en muestras de hígado de res, cerdo y pollo. CienciaUAT. 9(2): 68-73.

NRC, National Research Council (1994). Nutrient Requirements of Poultry. Ninth revised edition. Washington, D. C.: National Academy Press. 155 Pp.

Plascencia, A., Mendoza, G., Vásquez, C. y Zinn, R. (2005). Factores que influyen en el valor nutricional de las grasas utilizadas en las dietas para bovinos de engorda en confinamiento. Interciencia. 30(3): 134-142.

ROSS, Suplemento de Nutrición del Pollo de Engorde (2009). Manual de Manejo del Pollo de Engorde Ross. [En línea]. Disponible en: http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDocs/Ross-Suplemento-Nutricin-Pollo-Engorde-2009.pdf. Fecha de consulta: 8 de febrero de 2015.

Silva, G., Franke, M., Garcia, M., Giglio, E. H., Angélica, C., Carvalho, I. L., and Gomes, A. (2015). Ajuste preciso do nível de energia na dieta de frangos de corte para controle do desempenho e da composição lipídica da carne. Ciência Rural. 45(1): 104-110.

Sklan, D. (1979). Digestion and absorption of lipids in chicks fed triglycerides or free fatty acids: Synthesis of monoglycerides in the intestine. Poultry Science. 58(4): 885-889.

Stanaćev, V. Ž., Milić, D., Milošević, N., Stanaćev, V. S., Pavlovski, Z., Škrbić, Z., and Puvača, N. (2013). Different sources and levels of vegetable oils in broiler chicken nutrition. Biotechnology in Animal Husbandry. 29(2): 321-329.

UNA, Unión Nacional de Avicultores (2015). Crecerá 2.5 % la avicultura mexicana. [En línea]. Disponible en: http://www.una.org.mx/index.php/component/content/article?layout=edit&id=56. Fecha de consulta: 2 de marzo de 2015.

Vázquez-Añón, M. and Jenkins, T. (2007). Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen, and fatty acid metabolism. Journal of Dairy Science. 90(9): 4361-4867.

Vázquez-Añόn, M., Nocek, J., Bowman, G., Hampton, T., Atwell, C., Vázquez, P., and Jenkins, T. (2008). Effects of feeding a dietary antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow. Journal of Dairy Science. 91(8): 3165-3172.

Waldroup, P. W., Watkins, S. E., and Saleh. E. A. (1995). Comparison of two blended animal-vegetable fats having low or high free fatty acid content. Journal of Applied Poultry Research. 4(1): 41-48.

Wiseman, J., Salvador, F., and Craigon, J. (1991). Prediction of the apparent metabolizable energy content of fats fed to broiler chicks. Poultry Science. 70(7): 1527-1533.

Wright, C. (2013). ¿Qué tan competitiva es la avicultura mexicana?, en elsitioavicola.com. [En línea]. Disponible en: http://www.elsitioavicola.com/poultrynews/26269/nqua-tan-competitiva-es-la-avicultura-mexicana#sthash.USJ4kvkX.dpuf. Fecha de consulta: 17 de febrero de 2015.

Wu, H., Gong, L. M., Guo, L., Zhang, L., and Li, J. T. (2011). Effects of the free fatty acid content in yellow grease on performance, carcass characteristics, and serum lipids in broilers. Poultry Science. 90(9): 1992-1998.

Published

2016-02-29

How to Cite

Salinas-Chavira, J., Orduña-Hernández, H. M., Montaño-Gómez, M. F., Infante-Rodríguez, F., Manríquez-Núñez, O. M., Vázquez-Sauceda, M. de la L., & Yado-Puente, R. (2016). Effect of frying fat substitution by vegetable oil and energy concentration on diets for productive performance of broilers. CienciaUAT, 10(2), 44-51. https://doi.org/10.29059/cienciauat.v10i2.711

Issue

Section

Biotechnology and Agricultural Sciences