Diagnostic of the aggregate quarry “La Inagua”, Cuba performance through the use of an evaluation matrix

Authors

  • Naisma Hernández-Jatib Instituto Superior Minero Metalúrgico de Moa Dr. Antonio Núñez Jiménez, Avenida Calixto García Iñiguez núm. 15, 7 de Diciembre y calle Reinaldo Laffita Rueda, Reparto Caribe, Moa, Holguín, Cuba, C.P. 83300.
  • Isnel Guilarte-Cutiño Instituto Superior Minero Metalúrgico de Moa Dr. Antonio Núñez Jiménez, Avenida Calixto García Iñiguez núm. 15, 7 de Diciembre y calle Reinaldo Laffita Rueda, Reparto Caribe, Moa, Holguín, Cuba, C.P. 83300.

DOI:

https://doi.org/10.29059/cienciauat.v13i1.923

Keywords:

diagnostic quarries, assessment matrix, charge and transport, La Inagua, Eastern Cuba

Abstract

The growing demand for construction aggregates in Cuba is one of the main sources of economic growth. Given the increase in the extraction of this raw material, some studies on technological diagnostics have been developed, from different disciplinary approaches, edges, and denominations. However, there are still insufficient scientific studies with records of official data on the national growth of this sector and the technological, environmental, and safety development that they use for their production in quarries. The objective of the present work was to make an integral technological diagnosis that analyzes the existing technologies and determines the technical level, and the environmental and safety performance as well as the socioeconomic impact of “La Inagua” quarry, located in Eastern Cuba. To achieve this aim, we partially used the matrix of evaluation of aggregate quarries (mECA), which compares the degree of implementation of the best available techniques, for each of the aspects assessed. In this diagnosis, the load and transport variable and the indicators that constitute the matrix were used. The results obtained showed that the technological status of this quarry can be classified as regular, since a value of 100 % was obtained in the technical aspect. The value of 73 %, reached in the environmental and technological aspect, revealed deficiencies in the use of adequate techniques to mitigate the environmental impacts, as well as an insufficiency of individual safety equipment. The inexistence of investments in the quarry is shown from the value of 6 %, derived from the socioeconomic aspect. Finally, a 43.6 % value of the quarry evaluation matrix index was obtained, indicating a regular performance of the studied quarry. Therefore, it is necessary to increase the efficiency and quality of its production and reduce its environmental impact.

References

Ahmed, P. K. and Rafiq, M. (1998). Integrated benchmarking: a holistic examination of select techniques for benchmarking analysis. Benchmarking for Quality Management and Technology. 5(3): 225-242.

Alfaro, J. (2003). Materiales utilizados como áridos. [En línea]. Disponible en: http://www.slideshare.net. Fecha de consulta: 3 de marzo de 2010.

Appelgren, J. (2008). En un estándar industrial. Mining & Construction. 2: 24-25.

Balleto, G., Mei, G., and Garau, Ch. (2015). Relationship between quarry activity and municipal spatial planning: a possible mediation for the case of Sardinia, Italy. Sustainability. 7(12): 16148-16163.

Barbachi, M., Imad, A., Jeffali, F., Boudjellal, K., and Bouabaz, M. (2017). Physical characterization of sea shell for a concrete formulation. Journal of materials and Environmental Sciences. 8(1): 332-337.

Castellanos M., Yosel (2014). Acercar cada vez más la producción a la demanda. [En línea]. Disponible en: http://www.granma.cu/cuba/2014-06-30/acercar-cada-vez-mas-la-produccion-a-la-demanda. Fecha de consulta: 13 de junio de 2018.

Chiemela, Ch., Walter, I. E., Ogedi, I, Peter, O., and Mong, E. (2014). Comparing the compressive strengths of concrete made with river sand and quarry dust as fine aggregates. International Journal of Recent Research and Applied Studies. 15(2): 179-189.

Danielsen, S. W. and Kuznetsova, E. (2015). Environmental Impact and Sustainability in Aggregate Production and Use. In G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, and F. Luino (Eds.), Engineering Geology for Society and Territory (pp. 41-44). Springer, Cham. Springer International Publishing Switzerland.

Dellero, H. and El Kharim, Y. (2013). Rockfall hazard in an old abandoned aggregate quarry in the city of Tetouan, Morocco. Intenational Journal of Geoscience. 4(8): 1228-1232.

Egorov, P. V., Bober, E. A., Kustnietsov, Y. N., Kosminov, E. A., Reshemov, C. E. y Krasiuk, N. N. (2000). Fundamentos de Minería. Editorial de la Universidad Estatal de Minas de Moscú. 408 Pp.

Farhana, S., Bhumika, P., Jayesh, P., and Pitroda, J. (2013). A study on utilization aspects of stone chipsas an aggregate replacement in concrete in Indian context. International Journal of Engineering Trends and Technology. 4(8): 3500-3505.

Ganiron, T. U. (2015). Recycling concrete debris from construction and demolition waste. International Journal and Advance Science and Technology. 77: 7-24.

Garzón-Gaitán, C. A. (2002). Auditorías tecnológicas. Ingeniería e investigación. 50: 30-35.

Gallardo-Martínez, D., Cabrera-Díaz, I., Bruguera-Amaran, N. y Madrazo-Escalona, F. (2013). Evaluación de impactos ambientales provocados por la actividad minera en la localidad de Santa Lucía, Pinar del Río. Rev. Av. 15(1): 94-108.

Ismail, S., Hoe, K. W., and Ramli, M. (2013). Sustainable aggregates: The potential and challenge for natural resources conservation. Procedia-Social and Behavioral Sciences. 101(8): 100-109.

Lad, R. J. and Samant, J. S. (2014). Environmental and social impacts of stone quarrying- A case study of Kolhapur District. International Journal of Current Research. 6(63): 5664-5669.

Martínez-Segura, M. A. (2009). Diagnóstico tecnológico del sector de los áridos y su aplicación a la región de Murcia, en Tesis doctoral. [En línea]. Disponible en: http://repositorio.upct.es. Fecha de consulta: 1 de mayo de 2017.

Minguez-Alcaide, X. (2015). Métodos de diálogo con grandes grupos: herramientas para afrontar la complejidad. Revista de Estudios Sociales. 51: 186-197.

Milián-Milián, E., Ulloa-Carcassés, M. y Jornada-Krebs, A. S. (2012). Evaluación minero ambiental del yacimiento polimetálico, Santa Lucía de Pinar del Río, Cuba. Revista Geología Minería. 28(3): 68-75.

Montes-de-Oca-Risco, A. y Ulloa-Carcassés, M. (2013). Recuperación de áreas dañadas por la minería en la Cantera Los Guaos, Santiago de Cuba, Cuba. Revista Luna Azul. 37: 74-88.

Montiel, K. y Villarreal, L. M. (2004). Análisis multitemporal del impacto generado por la explotación minera en el medio geomorfológico de la isla de toas, estado zulia. Terra Nueva Etapa. 20(29): 55-71.

Nolasco, D. A. (2010). Desarrollo de proyectos MDL en plantas de tratamiento de aguas residuales, en Banco Interamericano de Desarrollo, nota técnica 116. [En línea]. Disponible en: https://publications.iadb.org/bitstream/handle/11319/5506/Desarrollo%20de%20proyectos%20MDL%20en%20plantas%20de%20tratamiento%20de%20aguas%20residuales%20.pdf?sequence=1&isAllowed=y. Fecha de consulta: 26 de marzo de 2018.

NC 18-64: 1986 (1986). Transporte público y de mercancías. Ruido emitido por los vehículos. Método de ensayo. [En línea]. Disponible en: http://noise-control.radical-management.com/2012/05/ruido-normativa-y-legislacion-en-cuba.html Fecha de consulta: 27 de marzo de 2018.

Posada, V. V. y Sepúlveda, G. F. (2013). Diagnóstico minero y económico del departamento de Antioquia. Boletín de Ciencias de la Tierra. (33): 125-134.

Quintero, E. C., Bayona, A. G. G., Lopez, M. Á. H. y Paez, M. L. V. (2017). Manejo estratégico de la producción de residuos estériles de minería sustentable, utilizando prácticas mineras eco-eficientes en Colombia. Revista de Investigación Agraria y Ambiental. 8(2): 107-118.

Ruiz, M. P., Gauthier, P. M., Niño, L. L., and Acevedo, P. A. (2015). Environmental assessment of the mineral extraction and non-renewable energy due to dense graded hot mix and warm mix asphalts processes. Chemical Engineering Transactions. 43: 2197-2202.

Shinn, T. (1982). Scientific disciplines and organizational specificity: the social and cognitive configuration of laboratory activities. In N. Elias, H. Martins, and R. Whitley (Eds.), Scientific Establishments and Hierarchies (pp. 239-264). Dortrecht, Reidel: Publishing Co. Springer Netherlands.

Sulymon, N., Ofuyatan, O., Adeye, O., Olawale, S., Busari, A., Bamigboye, G., and Jolayemi, J. (2017). Engineering properties of concrete made from gravels obtained in Southwestern Nigeria. Cogent Engineering. 4(1): 1-11.

Torres, P., Hernández, D. y Paredes, D. (2012). Uso productivo de lodos de plantas de tratamiento de agua potable en la fabricación de ladrillos cerámicos. Revista ingeniería de construcción. 27(3): 145-154.

Trigueros, E. (2006). “Estudio de los parámetros de viabilidad de las canteras subterráneas de mármol”. Fabricación de Áridos en la Región de Murcia. Estrategias y Desarrollo, en Jornada Técnica. [En línea]. Disponible en: http://hdl.handle.net/10317/1971. Fecha de consulta: 6 de enero de 2017.

Zongjin, L. (2014). Lecture note on Construction materials –Aggregate. [En línea]. Disponible en: http://www.readbag.com/teaching-ust-hk-civl111-chapter3. Fecha de consulta: 28 de mayo de 2017.

Published

2018-07-19

How to Cite

Hernández-Jatib, N., & Guilarte-Cutiño, I. (2018). Diagnostic of the aggregate quarry “La Inagua”, Cuba performance through the use of an evaluation matrix. CienciaUAT, 13(1), 06-18. https://doi.org/10.29059/cienciauat.v13i1.923

Issue

Section

Social Science