Fabrication and characterization of quantum wells for the study of light-matter interaction
DOI:
https://doi.org/10.29059/cienciauat.v17i2.1737Keywords:
quantum well, spectroscopy, excitonsAbstract
Quantum Wells are the basis for a great variety of electronic devices such as leds, lasers, photodetectors and modulators. Their optoelectronic properties depend on their chemical composition and the thickness of each layer. Therefore, a precise control during their growth is needed. This work has the objective of presenting the epitaxial growth of coupled and uncoupled asymmetric AlGaAs/GaAs/AlGaAs quantum wells and their characterization using optical techniques such as reflectance anisotropy spectroscopy (RAS) and photoluminescence (PL). An experimental study of the different interactions between the confined levels of energy in coupled quantum wells was carried on. This kind of structures is of special interest because they allow the formation and observation not only of direct excitons and trions inside a single quantum well, but of indirect excitons and trions, which are only formed by electrons of one quantum well and holes of the neighbor quantum well (Intra-QW transitions). Three intrinsic quantum wells based on gallium arsenide (GaAs) were grown bymolecular beam epitaxy (MBE), one single QW and a pair of coupled asymmetric QWs. The effect of breaking symmetry (from de D2d a C2v) on the spintronic properties of the structure was observed by RAS and PL measurements at ~ 30 K. The main techniques and methods for the growth of intrinsic quantum wells were established, which are the basis for the creation of devices with more complex structures. The use of spectroscopic techniques for the study of quantum wells allowed the demonstration of the presence of optical anisotropies that influence the behavior of exciton’s spins at quantum wells.
References
Biermann, K., Helgers, P., Crespo-Poveda, A., Kuznetsov, A., Tahraoui, A., Röben, B., …, and Grahn, H. (2021). In situ control of molecular beam epitaxial growth by spectral reflectivity analysis. Journal of Crystal Growth. 557(124): 125993. DOI: https://doi.org/10.1016/j.jcrysgro.2020.125993
Braun, W. (1999). Applied RHEED reflection high energy electron diffraction during crystal growth. Springer Tracts in Modern Physics 154. New York: Springer-Verlag W. Braun. 216 Pp.
Braun, W., Trampert, A., Däweritz, L., and Ploog K. H. (1997). Nonuniform segregation of Ga at AlAs/GaAsheterointerfaces. Physical Review B. 55(3): 1689-1695. DOI: https://doi.org/10.1103/PhysRevB.55.1689
Bravo-Velázquez, C. A., Lastras-Martínez, L. F., Ruiz-Cigarrillo, O., Flores-Rangel, G., Tapia-Rodríguez, L. E., Biermann, K., and Santos, P. V. (2022). Photoluminescence of double quantum wells: Asymmetry and excitation laser wavelength effects. Physical Status Solidi B. 259(4): 2100612. DOI: https://doi.org/10.1002/pssb.202100612
Chen, Y., Cingolani, R., Andreani, L. C., and Bassani, F. (1988). Photoluminiscence in quantum well and bulk GaAs: a direct comparative study. Il Nuovo Cimento D. 10(7): 847-859. DOI: https://doi.org/10.1007/BF02450144
Downs, C. and Vandervelde, T. (2013). Progress in infrared photodetectors since 2000. Sensors (Basel, Switzerland). 13(4): 5054-5098. DOI: https://doi.org/10.3390/s130405054
Esser, A., Runge, E., Zimmermann, R., and Langbein, W. (2000). Photoluminiscence and radiative lifetime of trions in GaAs quantum wells. Physical Review B. 62(12): 8232-8239. DOI: https://doi.org/10.1103/PhysRevB.62.8232
Etienne, B. (1993). RHEED-based measurements of atomic segregation at GaAs/AlAs interfaces. Journal of Crystal Growth. 127(1-4): 1056-1058. DOI: https://doi.org/10.1016/0022-0248(93)90790-4
Guerra, N., Guevara, M., Palacios, C., and Crupi, F. (2018). Operation and physics of photovoltaic solar cells: An overview. Revista de I+D Tecnológico. 14(2): 84-95. DOI: https://doi.org/10.33412/idt.v14.2.2077
Hamaguchi, C. (2017). Basic semiconductor physics. Switzerland: Springer Nature. 426 Pp. DOI: https://doi.org/10.1007/978-3-319-66860-4
Harrison, P. and Valavanis, A. (2016). Numerical solutions. In: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. United Kingdom: John Wiley and Sons. 624 Pp. DOI: https://doi.org/10.1002/9781118923337
Harvey, T. E., Bertness, K. A., Hickernell, R. K., Wang C. M., and Splett, J. D. (2003). Accuracy of AlGaAs growth rates and composition determination using RHEED oscillations. Journal of Crystal Growth. 251(1-4): 73-79. DOI: https://doi.org/10.1016/S0022-0248(03)00840-6
Henini, M. (1993). Semiconductor lasers: An overview part I. III-Vs Review. 6(5): 50-53. DOI: https://doi.org/10.1016/0961-1290(93)90111-Z
Hu, X., Li, G., and Yu, J. C. (2010). Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir. 26(5): 3031-3039. DOI: https://doi.org/10.1021/la902142b
Kyriienko, O., Kavokin, A. V., and Shelykh, I. A. (2013). Superradiant terahertz emission by dipolaritons. Physical Review Letters. 111(17): 176401. DOI: https://doi.org/10.1103/PhysRevLett.111.176401
Lastras-Martínez, L. F., Lastras-Martínez, A., and Balderas-Navarro, R. E. (1993). A spectrometer for the measurement of reflectance-difference spectra. Review of Scientific Instruments. 64(8): 2147-2152. DOI: https://doi.org/10.1063/1.1143952
Miller, R. C. and Kleinman, D. A. (1985). Excitons in GaAs quantum wells. Journal of Luminescence. 30(1-4): 520-540. DOI: https://doi.org/10.1016/0022-2313(85)90075-4
Mishurnyi, V. A. y Lastras-Martínez, A. (2009). Láseres de Semiconductor. México: Editorial Universitaria Potosina. 163 Pp.
Moebs, W., Ling, S. J. y Sanny, J. (2021). Física Universitaria. 9.5 Teoría de bandas de los sólidos, en openstax. [En línea]. Disponible en: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/9-5-teoria-de-bandas-de-los-solidos. Fecha de consulta: 1 de enero de 2023.
Morkoc, H. (1982). Influence of MBE Growth conditions on the properties of AlxGa1-xAs/GaAs heterostructures. Journal de Physique Colloques. 43(C5): 209-220. DOI: https://doi.org/10.1051/jphyscol:1982525
Ohring, M. (2002). Materials science of thin films, deposition and structure. California: Academic Press. 794 Pp. DOI: https://doi.org/10.1016/B978-012524975-1/50012-4
Ozturk, O., Ozturk, E., and Elagoz, S. (2018). The effect of barrier width on the electronic properties of double GaAlAs/GaAs and GaInAs/GaAs quantum wells. Journal of Molecular Structure. 40(2): 471-476. DOI: https://doi.org/10.17776/csj.520766
Rosenberg, I., Liran, D., Mazuz-Harpaz, Y., West, K., Pfeiffer, L., and Rapaport, R. (2018). Strongly interacting dipolar-polaritons. Science Advances. 4(10): eaat8880. DOI: https://doi.org/10.1126/sciadv.aat8880
Ruiz-Cigarrillo, O., Lastras-Martínez, L. F., Cerda-Méndez, E. A., Flores-Rangel, G., Bravo-Velazquez, C. A., Balderas-Navarro, R. E., ..., and Santos, P. V. (2021). Optical anisotropies of asymmetric double GaAs (001) quantum wells. Physical Review B. 103(3): 035309. DOI: https://doi.org/10.1103/PhysRevB.103.035309
Sands, D. E. (1993). Introducción a la cristalografía. España: Editorial Reverté. 176 Pp.
Seedhouse, A., Wilkes, J., Kulakovskii, V. D., and Muljarov, E. A. (2019). Terahertz radiation of microcavity dipolaritons. Optics Letters. 44(17): 4339-4342. DOI: https://doi.org/10.1364/OL.44.004339
Serafin, P., Byrnes, T., and Kolmakov, G. V. (2020). Driven dipolariton transistors in Y-shaped channels. Physics Letters A. 384(34): 126855. DOI: https://doi.org/10.1016/j.physleta.2020.126855
Sivalertporn, K. (2016). Effect of barrier width on the exciton states in coupled quantum wells in an applied electric field. Physics Letters A. 380(22-23): 1990-1994. DOI: https://doi.org/10.1016/j.physleta.2016.04.002
Sivalertporn, K., Mouchliadis, L., Ivanov, A. L., Philp, R., and Muljarov, E. A. (2012). Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field. Physical Review B. 85(4): 045207. DOI: https://doi.org/10.1103/PhysRevB.85.045207
Tapia, L. E. y Santiago-García J. G. (2022). ¿Cómo se fabrica un LED? Universitarios Potosinos. 268: 13-19.
Tsao, J. Y. (2002). Light Emitting Diodes (LEDs) for General Illumination, OIDA Optoelectronics Industry Development Association. [En línea]. Disponible en: https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/report_led_november_2002a_1.pdf. Fecha de consulta: 8 de enero de 2023.
Weightman, P., Martin, D. S., Cole, R. J., and Farrell, T. (2005). Reflection anisotropy spectroscopy. Reports on Progress in Physics. 68(6): 1251. DOI: https://doi.org/10.1088/0034-4885/68/6/R01
Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. (1992). Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters. 69(23): 3314-3317. DOI: https://doi.org/10.1103/PhysRevLett.69.3314
Wilkes, J. and Muljarov, E. A. (2017). Excitons and polaritons in planar heterostructures in external electric and magnetic fields: A multi-sub-level approach, Superlattices and Microstructures. 108: 32-41. DOI: https://doi.org/10.1016/j.spmi.2017.01.027
Witham, O., Hunt, R. J., and Drummond, N. D. (2018). Stability of trions in coupled quantum wells modeled by two-dimensional bilayers. Physical Review B. 97(7): 075424. DOI: https://doi.org/10.1103/PhysRevB.97.075424

Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Universidad Autónoma de Tamaulipas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.