Edible films based on nanostructured starch as barrier material moisture

Authors

  • Alma Vázquez-Luna Universidad Veracruzana, Instituto de Ciencias Básicas, Av. Dr. Rafael Sánchez Altamirano S/N, Carretera Xalapa-Las Trancas Km. 3.5, col. Industrial Ánimas, Xalapa, Veracruz, Mexico, C. P. 91192. http://orcid.org/0000-0001-5648-7549
  • Maricela Santiago Universidad Veracruzana, Instituto de Ciencias Básicas, Av. Dr. Rafael Sánchez Altamirano S/N, Carretera Xalapa-Las Trancas Km. 3.5, col. Industrial Ánimas, Xalapa, Veracruz, Mexico, C. P. 91192.
  • Eduardo Rivadeneyra-Domínguez Facultad de Química Farmacéutica Biológica. Universidad Veracruzana.
  • Rafael Díaz-Sobac Universidad Veracruzana, Instituto de Ciencias Básicas, Av. Dr. Rafael Sánchez Altamirano S/N, Carretera Xalapa-Las Trancas Km. 3.5, col. Industrial Ánimas, Xalapa, Veracruz, Mexico, C. P. 91192.

DOI:

https://doi.org/10.29059/cienciauat.v13i2.1105

Keywords:

edible films properties, nanostructuring, cornstarch

Abstract

The packaging materials provide physical protection and create the appropriate physicochemical conditions to give an adequate shelf life. Recently, the food industry has proposed to incorporate nanocomposites into edible films that degrade in a short period of time without causing environmental problems. The objective of this research was to develop an edible film using nanostructured starch, which can serve as a packaging, resistant to moisture, stable that can extend the shelf life of food and additionally environmental benefits. The effects of nanostructured starch on the physical and structural properties of an edible film were studied in terms of thickness, water solubility, diffusion, water vapor permeability (WVP) and water vapor transmission rate (WVTR). The results showed that the edible films formulated with nanostructured starch had the lowest thickness. Furthermore, the solubility in water, the diffusion coefficient, WVP and WVTR were lower for these films. The nanostructuring of corn starch made it possible to obtain edible films with excellent water barrier properties without modifying the structural properties of the polymer matrix, which could constitute an alternative for food packaging.

References

Acosta, D. L., Hernández, S. H., Gutiérrez, L. G. F., Alamilla, B. L., and Azuara, E. (2016). Modification of the soy protein isolates surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering. 168: 105-112.

ASTM, E96, American Society for Testing and Materials (2000). Standard test methods for water vapour transmission of materials. Philadelphia: Standards American Society for Testing and Materials. 739 Pp.

Avella, M., De-Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., and Grazia, V. M. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry. 93: 467-474.

Bertuzzi, M. A., Armada, M., and Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering. 82(1): 17-25.

Bradley, L. E., Castle, L., and Chaudhry, Q. (2011). Application of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science and Technology. 22(11): 604-610.

Brannon-Peppas, L. and Peppas, N. A. (1989). Solute and penetrant diffusion in swell able polymers. IX. The mechanisms of drug release from pH-sensitive swelling-controlled systems. Journal of Control Release. 8(3): 267-274.

Bravin, B., Peressini, D., and Sensidoni, A. (2004). Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. Journal of Agricultural and Food Chemistry. 52(21): 6448-6455.

Cao, G. (2004). Nanostructures and nanomaterials: synthesis, properties and applications. Ed. Imperial College Press, UK. 433 Pp.

Cheviron, P., Gouanvé, F., and Espuche, E. (2015). Effect of silver nanoparticles generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films. Journal of Nanoparticules Research. 17(9): 1-16.

Chinma, C. E., Ariahu, C. C., and Alakali, J. S. (2015). Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. Journal of Food Science and Technology. 52(4): 2380-2386.

Chiralt, A., Talens, P., Monedero, F. M., and Fabra, M. J.(2016). Effect of different components of edible/biodegradable composite films on water relationships in the polymer matrix. In water, stress in biological, chemical, pharmaceutical and food systems. In G. F. Gutiérrez-Lópéz, B. L. Alamilla, M. P. Buera, C. J. Welti, A. E. Parada, and G. V. Barbosa-Cánovas (Ed.), Food Engineering Series (pp. 101-113). New York, NY: Springer Science.

Chiumarelli, M. and Hubinger M. D. (2012). Stability, solubility, mechanical and barrier properties of cassava starch–Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids. 28(1): 59-67.

Chiumarelli, M. and Hubinger, M. D. (2014). Evaluation of edible films and coating formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids. 28: 20-27.

Chiumarelli, M., Pereira, L. M. R., Ferrari, C. C., Sarantópoulos, C. I. G. L., and Hubinger. M. D. (2010). Cassava starch coating and citric acid to preserve quality parameters of fresh-cut “Tommy Atkins” mango. Journal of Food Science. 75: 297-304.

Condés, M. C., Añón, M. C., Mauri, A. N., and Dufresne, A. (2015). Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids. 47: 146-157.

Crank, J. (1975). The mathematics of diffusion. (Second edition). England, Oxford: University Press. 414 Pp.

Gennadios, A., Weller, C. L., and Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering. 21(4): 395-409.

Gutiérrez, J. T., Tapia, M. S., Pérez, E., and Famá, L. (2015). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids. 45: 211-217.

Ji, Y., Seetharaman, K., and White, P. J. (2004). Optimizing a small-scale cornstarch extraction method for use in the laboratory. Cereal Chemistry. 81(1): 55-58.

Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., and Moayedi, A. A. (2016). Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules. 89: 256-264.

Pascual, P. L. A., Flores, A. E., Alamilla, B. L., Chanona, P. J. J., Beristain, C. I., Gutiérrez, L. G. F., and Azuara, E. (2014). Micropores and their relationship with carotenoids stability: A new tool to study preservation of solid foods. Food and Bioprocess Technology. 7(4): 1160-1170.

Peppas, N. A. and Sinclair, J. L. (1983). Anomalous transport of penetrants in glassy polymers. Colloidal Polymer Sciences. 261(5): 404-408.

Piringer, O. G. and Baner, A. L. (2008). Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Nueva York: Wiley-VCH Germany. 576 Pp.

Rafieian, F., Shahedi, M., Keramat, J., and J. Simonsen, J. (2014). Thermomechanical and morphological properties of nanocomposite films from wheat gluten matrix and cellulose nanofibrils. Journal of Food Science 79(1): N100-N107.

Romero, C. A., Zamudio, P. B., and Bello, L. A. (2011). Antimicrobials in oxidized banana starch films: effect on antibacterial activity, microstructure, mechanicals and barrier properties. Revista Mexicana de Ingeniería Química. 10(3): 445-453.

Silvestre, C., Duraccio, D., and Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science. 36(12): 1766-1782.

Slavutsky, M. A. and Bertuzzi A. M. (2012). A phenomenological and thermodynamic study of the water permeation process in corn starch/MMT films. Carbohydrates Polymers. 90(1): 551-557.

Slavutsky, M. A. and Bertuzzi, A. M. (2014). Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrates Polymers. 110: 53-61.

Slavutsky, M. A. and Bertuzzi A. M. (2015). Formulation and characterization of nanolaminated starch-based film. LWT-Food Science and Technology. 61(2): 407-413.

Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology. 18(2): 84-95.

Youssef, A. M. (2016). Polymer Nanocomposites as a New Trend for Packaging Applications. Polymer Plastics Technology Engineering. 52(7): 635-660.

Published

2019-01-31

How to Cite

Vázquez-Luna, A., Santiago, M., Rivadeneyra-Domínguez, E., & Díaz-Sobac, R. (2019). Edible films based on nanostructured starch as barrier material moisture. CienciaUAT, 13(2), 152-164. https://doi.org/10.29059/cienciauat.v13i2.1105

Issue

Section

Biotechnology and Agricultural Sciences