Survival rates and characteristics of spreads in two years stumps of crops with dendroenergy potential

Authors

  • Julio César Ríos-Saucedo Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) Campo Experimental Valle del Guadiana.
  • Eduardo Acuña-Carmona Universidad de Concepción, Facultad de Ciencias Forestales.
  • Luis Manuel Valenzuela-Nuñez Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas, av. Universidad s/n fracc. Filadelfia, Gómez Palacio, Durango, México, C. P. 35010.
  • Jorge Cancino-Cancino Universidad de Concepción, Facultad de Ciencias Forestales.
  • José Javier Corral-Rivas Instituto de Silvicultura e Industria de la Madera, Ciudad Universitaria.
  • Rigoberto Rosales-Serna Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) Campo Experimental Valle del Guadiana.

DOI:

https://doi.org/10.29059/cienciauat.v14i1.1143

Keywords:

management of coppice, woody crops, bioenergy, survival

Abstract

Several species of the genera Eucalyptus and Acacia are suitable for biomass production useful in energy generation. The objective of this research was to evaluate the survival and chaof four dendroenergetic species in three population densities. A randomized block design with three replications was used in three sites (Collipulli, La Aguada and Pilpilco Abajo plots) with contrasting edaphoclimatic characteristics. Eucalyptus globulus, Eucalyptus denticulata, Eucalyptus nitens and Acacia dealbata were studied in three plantation densities (5 000 trees/ha, 10 000 trees/ha and 15 000 trees/ha). The survival percentage and characteristics of stump regrowth characteristics of each stump were evaluated. The variables specie, plantation den­sity and planting site affected the analyzed parameters. Plantation density affected the diameter and height of prevalent sprouts of proventic proventitious shoots in all species. Hihest stump survival rate (97 %) was presented by Eucalyptus nitens in Pipilco Abajo, with 79 % shoots survival of sprouts at a density of 5 000 trees/ha. However, at densities of 15 000 trees/ha, regrowth survival was 29%. The Acacia dealbata is a species characterized by its colonization capacity. However, at La Aguada, which had population densities of 5 000 trees/ha and 10 000 trees/ha, it showed a low stump (19% and 18 % respectively) and shoots (57 % and 63 % respectively) survival rate. The species Eucalyptus globulus showed high stump and shoot survival rates in all sites evaluated, therefore it can be considered a good option to optimize the scrub system.

References

Alonso, S., Asensio, V., Casaleiro, A. B. y Montalvo, J. (2008). Control de eucalipto y reforestación con especies caducifolias: innovación y efectos ecológicos. Cuadernos de la Sociedad Española de Ciencias Forestales. (28): 37-42.

Barros, S. (2013). Introducción de especies de Eucalyptus a Chile. Reseña histórica. Ciencia e Investigación Forestal. 19(3): 69-94.

Binkley, D. and Stape, J. L. (2004). Sustainable management of Eucalyptus plantations in a changing world. In N. Borralho, J. S. Pereira, C. Marques, J.

Coutinho, M. Madeira, and M. Tomé (Eds.), Eucalyptus in a Changing World. Proceedings of an IUFRO Conference, Aveiro, Portugal (pp. 11-17). Portugal: RAIZ, Instituto Investigação de Floresta e Papel.

Brassiolo, M. M., Gomez, C. y Abt, M. (2007). Regeneración de un rodal de Tipa blanca utilizando brotes de cepas [Método de Monte Bajo]. Revista de Ciencia y Tecnología. 3(3): 44-53.

Catry, F. X., Moreira, F., Tujeira, R., and Silva, J. S. (2013). Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. Forest Ecology and Management. 310: 194-203.

Domingues, R. M. A., Patinha, D. J. S., Sousa, G. D. A., Villaverde, J. J., Silva, C. M., Freire, C. S. R., and Pascoal-Neto, C. (2011). Eucalyptus biomass residues

from agroforest and pulping industries as sources of high-value triterpenic compounds. Cellulose Chemistry and Technology. 45(7-8): 475-481.

Esquivel, E., Rubilar, R., Sandoval, S., Acuña, E., Cancino, J., Espinosa, M. y Muñoz, F. (2013). Efecto de plantaciones dendroenergéticas en el carbono a nivel de suelo, en dos suelos contrastantes de la Región de Biobío, Chile. Revista Árvore. 37(6): 1135-1144.

Farinaci, J. S., da-Ferreira L. C., and Batistella, M. (2013). Forest transition and ecological modernization: eucalyptus forestry beyond good and bad. Ambiente & Sociedade. 16(2): 25-46.

Ferreira, M., Costa, S., Cavalcante, R., Castro, R., Oliveira, V., Carneiro, A. O., ..., and Pimenta, A. (2017). Biomass and energy production at short rotation eucalyptus clonal plantations deployed in rio grande do norte. Revista Árvore. 41(5).

Ferreira, T., Paiva, J. M., and Pinho, C. (2014). Performance assessment of invasive Acacia dealbata as a fuel for a domesticpellet boiler. Chemical Engineering Transactions. 42(1): 73-78.

Ferrere, P., Lopez, G. A., Boca, R. T., Galetti, M. A., Esparrach, C. A., and Pathauer, P. S. (2005). Initial density effect on Eucalyptus globulus growth in a

Nelder modified trial. Forest Systems. 14(2): 174-184.

Fuentes, R., Pauchard, A., Cavieres, L., and García,R. (2011). Survival and growth of Acacia dealbata vs.native trees across an invasion front in south-central Chile. Forest Ecology and Management. 261(6): 1003-1009.

García, O. and Ruiz, F. (2003). A growth model for eucalypt in Galicia, Spain. Forest Ecology and Management. 173(1): 49-62.

Geldres, E., Shlatter, J. E. y Marcoleta, A. (2004). Monte Bajo, opción para tres especies de Eucaliptos en segunda rotación, un caso en la provincia de Osorno, Décima Región, Chile. Bosque. 25(3): 57-62.

Hamilton, M. G., Dutkowski, G. W., Joyce, K. R., and Potts, B. M. (2011). Metaanalysis of racial variation in Eucalyptus nitens and E. denticulata. New Zealand Journal of Forestry Science. 41: 217-230.

McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology. 83(1): 47-54.

Mendes, M. and Pala, A. (2003). Type I error rate and power of three normality tests. Pakistan Journal of Information and Technology. 2(2): 135-139.

Moxham, C., Duncan, M., and Moloney, P. (2018). Tree health and regeneration response of Black Box (Eucalyptus largiflorens) to recent flooding. Ecological Management & Restoration. 19(1): 58-65.

Novoa, Y., Villaseca, S., Del-Canto, P., Rouanet, J., Sierra, C. y Del-Pozo, A. (1989). Mapa Agroclimático de Chile. Santiago de Chile: Instituto de Investigaciones Agropecuarias, INIA. 221 Pp.

Oliveira, A., Neves, A., Vinícius, R., Cavalcante, R.,Papaspyrou, L., Pereira, R. y Rocha, B. (2014). Potencial energético da madeira de Eucalyptus sp. emfunção da idade e de diferentes materiais genéticos. Revista Árvore. 38(2): 375-381.

Patiño-Martínez, P. E. (2014). Biomasa Residual Vegetal: Tecnologías de transformación y estado actual. Innovaciencia. 2(1): 45-52.

Quartucci, F., Schweier, J., and Jaeger, D. (2015). Environmental analysis of Eucalyptus timber production from short rotation forestry in Brazil. Journal International of Forest Engineering. 26(3):225-239.

Ramos-Llorente, J. J. (2013). La biomasa se abre camino entre las renovables. Energética. 21: 70-71.

Ríos-Saucedo, J., Acuña-Carmona, E., Cancino-Cancino, J., Rubilar-Pons, R., Corral-Rivas, J. y Rosales-Serna, R. (2017). Dinámica de brotación y densidad básica de la madera en rebrotes de tres especies dendroenergéticas. Agrociencia. 51(2): 215-227.

Rodríguez, A., Cancino, J., Acuña, E., Rubilar, R. y Muñoz, F. (2013). Evaluación del crecimiento de plantaciones dendroenergéticas de Eucalyptus spp., según densidad de plantación y turno de rotación, en suelos contrastantes de la región del Bío Bío, Chile. Ciencia e Investigación Forestal INFOR. 19(1): 7-18.

Ruiz, F. and Lopez, G. (2010). Review of cultivation history and uses of eucalypts in Spain. Conference of Eucalyptus species management, history, status and trends in Ethiopia. Addis Ababa, Ethiopia. [En línea]. Disponible en: https://www.researchgate.net/publication/258112099_Review_of_cultivation_History_and_Uses_of_Eucalypts_in_Spain. Fecha de consulta: 4 de abril de 2018.

SAS Institute (2008). SAS/STAT 9.2 User’s guide. SAS Institute Cary, NC. [En línea]. Disponible en: https://support.sas.com/documentation/cdl/en/

statugstatmodel/61751/PDF/default/statugstatmodel.pdf. Fecha de consulta: 10 de junio de 2014.

Silva, C. E., Salgado, O. D. y González, B. (2011). Evaluación de la capacidad de rebrotes de dos especies arbóreas en el bosque tropical seco en Nandarola, Pacifico Sur. La Calera. 8(11): 57-61.

Sixto, H., Hernández, M. J., Barrio, M., Carrasco, J., and Cañellas, I. (2008). Plantaciones del género Populus para la producción de biomasa con fines energéticos: revisión. Forest Systems. 16(3): 277-294.

Solimani, N. (2011). Evaluation physiographic factors on oak sprout structure in mountain forest of west of Iran. Advances in Environmental Biology. 5(9): 2906-2912.

Turnbull, J. W. (1999). Eucalypt plantations. New Forests. 17(1-3): 37-52. White, D. A., Beadle, C. L., Worledge, D., and Honeysett, J. L. (2016). Wood production per evapotranspiration was increased by irrigation in plantations of Eucalyptus globulus and E. nitens. New Forests. 47(2): 303-317.

Published

2019-07-29

How to Cite

Ríos-Saucedo, J. C., Acuña-Carmona, E., Valenzuela-Nuñez, L. M., Cancino-Cancino, J., Corral-Rivas, J. J., & Rosales-Serna, R. (2019). Survival rates and characteristics of spreads in two years stumps of crops with dendroenergy potential. CienciaUAT, 14(1), 145-154. https://doi.org/10.29059/cienciauat.v14i1.1143

Issue

Section

Biotechnology and Agricultural Sciences

Similar Articles

You may also start an advanced similarity search for this article.