Enrichment of olive oil with carotenoids from red pepper (Capsicum anuum L.) by enzymatic maceration

Authors

  • Erik Alberto Báez-Hernández Universidad Veracruzana, Facultad de Ciencias Químicas, Circuito Gonzalo Aguirre Beltrán s/n, zona Universitaria, Xalapa, Veracruz, México, C. P. 91000.
  • Samuel García-Díaz Universidad Veracruzana, Facultad de Ciencias Químicas, Circuito Gonzalo Aguirre Beltrán s/n, zona Universitaria, Xalapa, Veracruz, México, C. P. 91000. https://orcid.org/0000-0001-9546-5967
  • Frixia Galán-Méndez Universidad Veracruzana, Facultad de Ciencias Químicas, Circuito Gonzalo Aguirre Beltrán s/n, zona Universitaria, Xalapa, Veracruz, México, C. P. 91000. https://orcid.org/0000-0002-2716-1790
  • Laura Acosta-Domínguez Universidad Veracruzana, Facultad de Ciencias Químicas, Circuito Gonzalo Aguirre Beltrán s/n, zona Universitaria, Xalapa, Veracruz, México, C. P. 91000. https://orcid.org/0000-0003-3448-8094

DOI:

https://doi.org/10.29059/cienciauat.v19i1.1861

Keywords:

enzymatic maceration, carotenoids, edible oil

Abstract

Carotenoids can be incorporated into edible vegetable oils through maceration. This improves the stability of carotenoids and the enrichment of oil, although the extraction efficiency is low. The objective of this work was to improve the process of enriching olive oil with carotenoids from red pepper (Capsicum anuum L.) through maceration, using enzymatic hydrolysis prior to treatment. The olive was enriched with carotenoids extracted by enzymatic maceration (AOME) or direct maceration (AOMD). The stability of both oils at 8 °C, 25 °C and 45 °C was evaluated weekly for 6 weeks by measuring the degradation of carotenoids and the appearance of peroxides, modeling their reaction kinetics at each temperature. AOME reported a higher amount of carotenoids from the beginning (11.5 %) and throughout the study. Both oils presented the lowest rate of carotenoid degradation and peroxide formation at 8 °C storage (4 %), and increase in the formation of peroxides at 25 °C and 45 °C, during the 6 weeks, with a higher rate for AOMD. The peroxide index increased considerably when the samples from the two treatments kept at 8 °C and 25 °C were heated to 150 °C and 200 °C. A lower value of peroxides was present in both samples stored at 45 ºC and subjected to heating, a phenomenon associated with the formation of peroxide degradation products. Enzymatic hydrolysis as a pretreatment improved the carotenoid extraction rates during maceration in olive oil, as well as its storage stability. The evaluated process represents an alternative for enriching oil with carotenoids as bioactive compounds, when the oil is not intended to be used at high temperatures.

References

Baby, C. K. & Ranganathan, T. V. (2016). Effect of enzyme pretreatment on yield and quality of fresh green chilli (Capsicum annuum L) oleoresin and its major capsaicinoids. Biocatalysis and agricultural biotechnology, 7, 95-101. https://doi.org/10.1016/j.bcab. 2016.05.010

Caporaso, N., Paduano, A., Nicoletti, G., & Sacchi, R. (2013). Capsaicinoids, antioxidant activity, and volatile compounds in olive oil flavored with dried chili pepper (Capsicum annuum L.). European journal of lipid science and technology, 115(12), 1434-1442. https://doi.org/10.1002/ejlt.201300158

Cavazza, A., Corti, S., Mancinelli, C., Bignardi, C., & Corradini, C. (2015). Effect of the addition of chili pepper powder on vegetable oils oxidative stability. Journal of the american oil chemists' society, 92(11), 1593-1599. https://doi.org/10.1007/s11746-015-27389

Cerecedo-Cruz, L., Azuara-Nieto, E., Hernández-Álvarez, A. J., González-González, C. R., & Melgar-Lalanne, G. (2018). Evaluation of the oxidative stability of Chipotle chili (Capsicum annuum L.) oleoresins in avocado oil. Grasas y aceites, 69(1), 240. https://doi.org/10.3989/gya.0884171

Chutia, H. & Mahanta, C. L. (2020). Green ultra-sound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative food science and emerging technologies, 67, 102547. https://doi.org/10.1016/jifset.2020.102547

Cortés-Ferré, H. E., Guajardo-Flores, D., Romero-De-La-Vega, G., & Gutierrez-Uribe, J. A. (2021). Recovery of Capsaicinoids and Other Phytochemicals Involved With TRPV-1 Receptor to Re-valorize Chili Pepper Waste and Produce Nutraceuticals. Frontiers in sustainable food systems, 4, 303. https://doi.org/10.3389/fsufs.2020.588534

Da-Silva, P. H. R., da-Silva, C., & Cervejeira-Bo-lanho, B. (2018). Ultrasonic-assisted extraction of betalains from red beet (Beta vulgaris L.). Journal of food process engineering, 41(6)1-6. https://doi.org/10.1111/jfpe.12833

De-Farias, V. L., da-Silva-Araújo, I. M., da-Rocha, R. F. J., dos-Santos-Garruti, D., & Pinto, G. A. S. (2020). Enzymatic Maceration of Tabasco Pepper: Effect on the Yield, Chemical and Sensory Aspects of the Sauce. LWT, 127, 109311. https://doi.org/10.1016/j.lwt.2020.109311

Hornero-Méndez, D. & Mínguez-Mosquera, M. I. (2001). Rapid Spectrophotometric Determination of Red and Yellow Isochromic Carotenoid Fractions in Paprika and Red Pepper Oleoresins. Journal of agricultural and Food chemistry, 49(8), 3584-3588. https://doi.org/10.1021/jf010400l

Jalali-Jivan, M. J., Fathi-Achachlouei, B., Ahmadi-Gavlighi, H., & Jafari, S. M. (2021). Improving the extraction efficiency and stability of b-carotene from carrot by enzyme-assisted green nanoemulsification. Innovative food science & emerging technologies, 74. 102836. https://doi.org/10.1016/j.ifset.2021.102836

Kehili, M., Sayadi, S., Frikka, F., Zammel, A., & Allouche, N. (2019). Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food and bioproducts processing, 117, 321-328. https://doi.org/10.1016/j.fbp.2019.08.004

Liu, Y., Zhang, C., Cui, B., Wang, M., Fu, H., & Wang, Y. (2021). Carotenoid-enriched oil preparation and stability analysis during storage: Influence of oils’ chain length and fatty acid saturation. LWT - Food science and technology, 151, 112163. https://doi.org/10.1016/j.lwt.2021.112163

Mendoza, N. N. G., Rodríguez, S. A. V., & Lima, B. L. R. (2020). Improvement of the extraction of carotenoids and capsaicinoids of chili pepper native (Capsicum baccatum), assisted with cellulolytic en-zymes. Revista peruana de biología, 27(1), 055-060. https://doi.org/10.15381/rpb.v27i1.17588

Molina-Peñate, E., Sánchez A., & Artola, A. (2022). Enzymatic hydrolysis of the organic fraction of municipal solid waste: Optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fer-mentation. Waste management, 137, 304-311. https://doi.org/10.1016/j.wasman.2021.11.014

Nath, P., Kaur, C., Rudra, S. G., & Varghese, E. (2016). Enzyme-assisted extraction of carotenoid-rich extract from red capsicum (Capsicum annuum). Agricultural research, 5, 193-204. https://doi.org/10.1007/s40003-015-0201-7

Núñez, R. Á., Pérez, B. R., Motzezak, R. H. y Chirinos, M. (2012). Contenido de azúcares totales, re-ductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129-135.

Otálora-Orrego, D. y Martin, D. A. (2021). Técnicas emergentes de extracción de b-caroteno para la valorización de subproductos agroindustriales de la zanahoria (Daucus carota L.): una revisión. Informador técnico, 85(1), 83-106. https://doi.org/10.23850/22565035.2857

Portillo-López, R., Morales-Contreras, B. E., Lozano-Guzmán, E., Basilio-Heredia, J., Muy-Rangel, M. D., Ochoa-Martínez, L. A., & Morales-Castro, J. (2021). Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. Journal of food science, 86(7), 3122-3136. 10.1111/1750-3841.15815

Sales-Silva, L. P. & Martínez, J. (2014) Mathema-tical modeling of mass transfer in supercritical fluid extraction of oleoresin from red pepper. Journal of food engineering, 133, 30-39. https://doi.org/10.1016/j.jfoodeng.2014.02.013

Sánchez-Camargo, A. P., Gutierrez, L. F., Milena, S., Martínez, H., Parada, F., & Narváez, C. E. (2019). Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. Journal of supercritical fluids, 152, 104574. https://doi.org/10.1016/j.supflu.2019.104574

Stoica, R., Moscovici, M., Tomulescu, C., & Băbeanu, N. (2016). Extraction and analytical methods of capsaicinoids - a review. Scientific bulletin series F. biotechnologies, 20, 93-98.

Suo, A., Fan, G., Wu, C., Li, T., & Cong, K. (2023). Green extraction of carotenoids from apricot flesh by ultrasound assisted corn oil extraction: Optimization, identification, and application. Food chemistry, 420, 136096. https://doi.org/10.1016/j.foodchem.2023.136096

Teramukai, K., Kakui, S., Beppu, F., Hosokawa, M., & Miyashita, K. (2020). Effective extraction of carotenoids from brown seaweeds and vegetable leaves with edible oils. Innovative food science and emerging technologie, 60, 2-7. https://doi.org/10.1016/j.ifset.2020.102302

Treto-Alemán, K. M., Torres-Castillo, J. A., Contreras-Toledo, A. R. y Moreno-Ramírez, Y. R. (2021). Enriquecimiento del aceite comestible por compuestos fenólicos y antioxidantes de chile piquín (Capsicum annuum var. glabriusculum). CienciaUAT, 15(2), 156-168. https://doi.org/10.29059/cienciauat.v15i2.1459

Walczak, J., Buszewski, B., Krakowska, A., & Rafinska, K. (2018). Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Industrial crops and products, 124, 931-940. https://doi.org/10.1016/j.indcrop.2018.08.004

Xia, Z., Han, Y., Du, H., McClements, D. J., Tang, Z., & Xiao, H. (2020). Exploring the effects of carrier oil type on in vitro bioavailability of b-carotene: A cell culture study of carotenoid-enriched nanoemulsions, LWT-Food science and technology, 134, 110224. https://doi.org/10.1016/j.lwt.2020.110224

Zhang, J., Zhang, M., Chen, K., Bhandari, B., & Deng, D. (2023). Impact of cooking methods on the quality, sensory and flavor compounds of Sichuan pepper oleoresin. Food chemistry, 427, 136639. https://doi.org/10.1016/j.foodchem.2023.136639

Published

2024-07-10

How to Cite

Báez-Hernández, E. A., García-Díaz, S., Galán-Méndez, F., & Acosta-Domínguez, L. (2024). Enrichment of olive oil with carotenoids from red pepper (Capsicum anuum L.) by enzymatic maceration. CienciaUAT, 19(1), 170–181. https://doi.org/10.29059/cienciauat.v19i1.1861

Issue

Section

Biotechnology and Agricultural Sciences

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.