Forthcoming

Performance evaluation of controllers for a bionic finger system

Authors

  • Erick Javier Sánchez-Garnica Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área académica de computación y electrónica, carretera Pachuca-Tulancingo km 4.5, Carboneras, Mineral de la Reforma, Hidalgo, México, C. P. 42184. https://orcid.org/0009-0007-8951-7127
  • Liliam Rodríguez-Guerrero Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área académica de computación y electrónica, carretera Pachuca-Tulancingo km 4.5, Carboneras, Mineral de la Reforma, Hidalgo, México, C. P. 42184. https://orcid.org/0000-0002-3587-0079
  • Rocío Ortega-Palacios Universidad Politécnica de Pachuca, Ingeniería Biomédica, Zempoala, Hidalgo, México, C. P. 43830. https://orcid.org/0000-0002-1947-2169
  • Omar Jacobo Santos-Sánchez Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área académica de computación y electrónica, carretera Pachuca-Tulancingo km 4.5, Carboneras, Mineral de la Reforma, Hidalgo, México, C. P. 42184. https://orcid.org/0000-0002-1694-2727

DOI:

https://doi.org/10.29059/cienciauat.v19i2.1895

Keywords:

bionic finger, optimal control, proportional control

Abstract

Technological advances have enabled the development of devices to compensate for the loss of a limb; however, their current cost still makes them inaccessible for people with limited resources and, in many cases, even for those with moderate incomes. There is extensive development, both scientific and amateur, of bionic fingers, but it is common for control techniques to be overlooked in their manipulation. The objective of this study was to evaluate the performance of four types of closed-loop controllers in the stable operation of a bionic finger. The controllers used were proportional plus compensation, optimal proportional plus compensation, proportional-integral with pole placement, and proportional-integral with Ziegler-Nichols tuning, in a bionic finger specifically adapted for this study. Control theory was applied to determine which controller had a better effect on overshoot and oscillations in the bionic finger. The proportional plus compensation controller showed the best performance, with less impact on overshoot and control signal oscillations, demonstrating its viability for use in bionic devices and its potential incorporation into a hand prosthesis to help amputees regain part of their diminished capabilities.

Author Biography

Erick Javier Sánchez-Garnica, Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área académica de computación y electrónica, carretera Pachuca-Tulancingo km 4.5, Carboneras, Mineral de la Reforma, Hidalgo, México, C. P. 42184.

Erick J. Sánchez-Garnica is a Ph.D. student in Automation and Control Sciences at the Autonomous University of the State of Hidalgo. He earned a Master's degree in Science from the Autonomous University of the State of Hidalgo in 2021. His research interests encompass control theory, algorithm implementation on microcontrollers, and software development.

References

Astrom, K. J. & Hägglund, T. (2006). PID control. IEEE Control Systems Magazine.

Bioparx (2018). Bioparx. [En línea]. Disponible en: http://www.bioparx.com/. Fecha de consulta: 3 de octubre de 2022.

Burton, D. (2016). Robotic or prosthetic hand. [En línea]. Disponible en: https://www.thingiverse.com/thing:1830958. Fecha de consulta: 3 de octubre de 2022.

Cortes, F. R. (2020). Robótica: control de robots manipuladores. Marcombo.

Deng, H., Luo, H., Wang, R., & Zhang, Y. (2018). Grasping force planning and control for tendon-driven anthropomorphic prosthetic hands. Journal of Bionic Engineering, 15(5), 795-804. https://doi.org/10.1007/s42235-018-0067-z

Deshpande, A. D., Ko, J., Fox, D., & Matsuoka, Y. (2013). Control strategies for the index finger of a tendon-driven hand. The International Journal of Robotics Research, 32(1), 115-128. https://doi.org/10.1177/0278364912466925

Difonzo, E., Zappatore, G., Mantriota, G., & Reina, G. (2020). Advances in finger and partial hand prosthetic mechanisms. Robotics, 9(4), 80. https://doi.org/10.3390/robotics9040080

Dougherty, D. (2012). The maker movement. Innovations: Technology, Governance, Globalization, (3), 11-14. https://muse.jhu.edu/article/499244

Duran, L. (2019). Prototype for the “LAD” Robotic Hand-finger. [En línea]. Disponible en: https://www.thingiverse.com/thing:3742369. Fecha de consulta: 10 de noviembre de 2022.

Espressif (2022). Espressif Systems. [En línea]. Disponible en: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf. Fecha de consulta: 17 de agosto de 2022.

Farebrother, R. W. (2018). Linear least squares computations. Routledge.

Franklin, G. F., Powell, D., & Emami-Naeini, A. F. (2019). Feedback Control of Dynamic Systems. Pearson.

Grashof, F. (1883). Theoretische Mashinenlehre. Leipzig.

Gross, R. (2017). Humanoid robotic hand. [En línea]. Disponible en: https://www.thingiverse.com/thing:2269115. Fecha de consulta: 3 de octubre de 2022.

Imbinto, I., Montagnani, F., Bacchereti, M., Cipriani, C., Davalli, A., Sacchetti, R., Gruppioni, E., Castellano, S., & Controzzi, M. (2018). The S-Finger: a synergetic externally powered digit with tactile sensing and feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(6), 1264-1271. https://doi.org/10.1109/TNSRE.2018.2829183

Jang, G., Lee, C., Lee, H., & Choi, Y. (2013). Robotic index finger prosthesis using stackable double 4-BAR mechanisms. Mechatronics, 23(3), 318-325. https://doi.org/10.1016/j.mechatronics.2013.01.006

Jung, S. Y., Kang, S. K., & Moon, I. (2008). Design of biomimetic hand prosthesis with tendon-driven five fingers. IEEE.

Kashef, S. R., Amini, S., & Akbarzadeh, A. (2020). Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria. Mechanism and Machine Theory, 145, 103677. https://doi.org/10.1016/j.mechmachtheory.2019.103677

Kim, U., Jung, D., Jeong, H., Park, J., Jung, H. M., Cheong, J., Choi, H. R., Do, H., & Park, C. (2021). Integrated linkage-driven dexterous anthropomorphic robotic hand. Nature Communications, 12(1), 1-13. https://doi.org/10.1038/s41467-021-27261-0

Kordaczek, R. & Pilat, A. K. (2020). Prototype and Simulation Model of a Robotic Hand. International Conference Mechatronic Systems and Materials, 1-6. https://doi.org/10.1109/MSM49833.2020.9201741

Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal Control. John Wiley & Sons. https://doi.org/10.1002/9781118122631

Li, X., Huang, Q., Chen, X., Yu, Z., Zhu, J., & Han, J. (2017). A novel under-actuated bionic hand and its grasping stability analysis. Advances in Mechanical Engineering, 9(2), 1687814016688859. https://doi.org/10.1177/1687814016688859

Liu, Y. W., Feng, F., & Gao, Y. F. (2014). HIT prosthetic hand based on tendon-driven mechanism. Journal of Central South University, 21(5), 1778-1791. https://doi.org/10.1007/s11771-014-2124-z

Luo, H., Duan, X., & Deng, H. (2014). Sliding mode impedance control of a underactuated prosthetic hand. IEEE, 2014. IEEE International Conference on Information and Automation. https://doi.org/10.1109/ICInfA.2014.6932747

Lynch y Park. (2017). Modern robotics. Cambridge University Press.

Machado, B., Quintero, E., Safla, E., & Armijos, A. (2020). Síntesis dimensional de mecanismo para una mano robótica basado en un eslabonamiento de cuatro barras. Polo del Conocimiento: Revista Científico-Profesional, 5(12), 707-724.

Nise, N. S. (2020). Control systems engineering. John Wiley & Sons.

Open Bionics (2017). Ada Robotic Hand. [En línea]. Disponible en: https://www.thingiverse.com/thing:1294517. Fecha de consulta: 3 de octubre de 2022.

Open Bionics (2021). Open bionics. [En línea]. Disponible en: https://openbionics.com. Fecha de consulta: 3 de octubre de 2022.

Ottobock (2013). Prótesis de Miembro Superior. [En línea]. Disponible en: https://www.ottobock.com.mx/prosthetics/upper-limb/. Fecha de consulta: 3 de octubre de 2022.

P4HBionics (2020). P4H Bionics. [En línea]. Disponible en: https://p4hbionics.com. Fecha de consulta: 3 de octubre de 2022.

Prakash, A. & Sharma, S. (2020). A low-cost system to control prehension force of a custom-made myoelectric hand prosthesis. Research on Biomedical Engineering, 36, 237-247.

Rondinò, S., Pisla, D., & Carbone, G. (2020). Design, simulation and preliminary testing of a robotic hand with a one-DOF movable palm. https://doi.org/10.1109/AQTR49680.2020.9129962

Saharan, L., Wu, L., & Tadesse, Y. (2020). Modeling and simulation of robotic finger powered by nylon artificial muscles. Journal of Mechanisms and Robotics, 12(1), 014501. https://doi.org/10.1115/1.4044740

Sobinov, A. R. & Bensmaia, S. J. (2021). The neural mechanisms of manual dexterity. Nature Reviews Neuroscience, 22(12), 741-757. https://doi.org/10.1038/s41583-021-00528-7

Song, T., Yan, Z., Guo, S., Li, Y., Li, X., & Xi, F. (2023). Review of sEMG for robot control: Techniques and applications. Applied Sciences, 13(17), 9546.

Tchimino, J., Markovic, M., Dideriksen, J. L., & Dosen, S. (2021). The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback. Journal of Neural Engineering, 18(4), 046091. https://doi.org/10.1088/1741-2552/ac07be

Vazquez-Vela, E. (2016). Los amputados y su rehabilitación. Un reto para el Estado. Academia Nacional de Medicina.

Velázquez-Velázquez, E., Doroteo-Chimal, C., Diaz-Arizmendi, L. J. y Suárez-Benítez, M. C. (2023). Estadios de maduración ósea digitopalmar en pacientes de la Clínica de Ortodoncia de la Universidad de Ixtlahuaca en comparación a los criterios establecidos por Björk, Grave y Brown, agosto 2016-julio 2018. Revista Mexicana de Ortodoncia, 8(4), 236-244.

Wahit, M. A., Ahmad, S. A., Marhaban, M. H., Wada, C., & Izhar, L. I. (2020). 3D printed robot hand structure using four-bar linkage mechanism for prosthetic application. Sensors, 20(15), 4174. https://doi.org/10.3390/s20154174

Wellstead, P. E. E. & Zarrop, M. B. (1991). Self-tuning Systems: Control and Signal Processing. West Sussex: John Wiley & Sons.

Winkley (1888). The winkley company. [En línea]. Disponible en: https://www.winkley.com. Fecha de consulta: 10 de noviembre de 2022.

Yoon, C. y Choi, D. (2017). Underactuated finger mechanism using contractible slider-cranks and stackable four-bar linkages. IEEE/ASME Transactions on Mechatronics, 22(5), 2046-2057. https://doi.org/10.1109/TMECH.2017.2723718

Published

2024-10-04

How to Cite

Sánchez-Garnica, E. J., Rodríguez-Guerrero, L., Ortega-Palacios, R., & Santos-Sánchez, O. J. (2024). Performance evaluation of controllers for a bionic finger system. CienciaUAT, 19(2). https://doi.org/10.29059/cienciauat.v19i2.1895

Issue

Section

Engineering

Similar Articles

<< < 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.