Sugar industry waste: an alternative for obtaining lactic acid

Authors

  • Ma. Guadalupe Bustos-Vázquez Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Tamps., México.
  • José Ernesto Cervantes-Martínez Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Tamps., México.
  • Miguel García-Delgado Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Tamps., México.
  • Nadia Adelina Rodríguez-Durán Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Tamps., México.
  • Efrén Compean-Ramírez Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Tamps., México.

Keywords:

agro-industrial waste, molasses, bagasse, lactic acid.

Abstract

Large amounts of crop residues and agro are generated and accumulated annually in nature in solid, causing serious environmental pollution problems and loss of potential sources of high added value. These problems bring increased interest in the scientific community in finding new technologies for exploiting them in obtaining high-value products. Within this waste (byproducts) is the sugar cane bagasse and molasses sugar or molasses. In this work we used solutions of hydrolyzed bagasse enriched with yeast extract (10 g / L), Corn Steep Liquor (10 g / L) and a mixture of both in fermentations with L. pentosus. On the other hand was used molasses from sugar cane performing a reversal of the sucrose prior to fermentation with enzyme invertase 4X 1% at pH 6.2 in sterile solutions of molasses 120g / L inoculated with L. rhamnosus and incubated at 41.5 º C and 150 rpm. In both cases, the fermentations were carried out to obtain lactic acid.

References

Bustos, G., Moldes, A., Cruz, J. y Domínguez, J. (2004). “Production of fermentable media from vine-trimming wastes and bioconversion into lactic acid by Lactobacillus pentosus”, en Journal of the Science of Food and Agricultura. 84: 2105-2112.

Dong-Mei, B., Shi-Zhong, L., Lewis, L. y Zhan-Feng, C. (2008). “Enhanced L-(+)-Lactic Acid Production by an Adapted Strain of Rhizopus oryzae using Corncob Hydrolysate”, en Applied Biochemistry And Biotechnology. 144: 79-85.

Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J. y Gokhale, D. (2008). “Utilization of Molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation”, en Applied and Environmental Microbiology. 74(1): 333-335.

Göksungur, Y. y Güvenç, U. (1997). “Batch and continuous production of lactic acid from beet molasses by Lactobacillus delbrueckii IFO 3200”, en J. Chem Technol Biotechnol. 69: 399-404.

Goncalves, L., Ramos, A., Almeida, J., Xavier, A. y Carrondo, M. (1997). “Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus”, en Applied Microbiology and Biotechnology. 48: 346-350.

Kwon, S., Lee, P., Lee, E. y Chang, N. (2000). “Production of lactic acid by Lactobacillus rhamnosus with vitamin-suplemented soybean hydrolysate”, en Enzyme and Microbial Technology. 26: 209-215.

Martínez, E., Villarreal, M., Almeida, J., Solenzal, A., Canilha, L. y Mussatto, S. (2002). “Uso de diferentes materias primas para la producción biotecnológica de xilitol”, en Cienc. Tecnol. Aliment. 3(5): 295-301.

Min-Tian, G., Koide, M., Gotou, R., Takanashi, H., Hirata, M. y Hano, T. (2005). “Development of a continuos electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus”, en Process Biochemistry. 40: 1033-1036.

Rivas, B., Moldes, A., Domínguez, J. y Parajó, J. (2004). “Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation”, en Enzyme Microbial Technol. 34(7): 627-634.

Rodrigues, R., Felipe, M., Almeida, J., Vitolo, M. y Gómez, P. (2001). “The influence of pH, temperatura and hydroysate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolysate treated with activated charcoal before or after vacuum evaporation”, en Brazilian Journal of Chemical Engineering. 18: 299-311.

Serna, L. y Rodríguez, A. (2005). “Producción biotecnológica de ácido láctico: estado del arte”, en Cienc. Tecnol. Aliment. 5(1): 54-65.

Serna, L. y Rodríguez, A. (2007). “Economical production of lactic acid using sugar cane wastes and juice”, en Agricultura Tecnica. Chile. 67(1): 29-38.

Sreenath, H., Moldes, A., Koegel, R. y Straub, R. (2001a). “Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber”, en J. Bioscience Bioengin. 92(6): 518-523.

Sreenath, H., Moldes, A., Koegel, R. y Straub, R. (2001b). “Lactic acid production from agriculture residues”, en Biotechnol Lett. 23(3): 179-184.

Suárez, R. y Morín, R. (2005). “Caña de azúcar y sostenibilidad: enfoques y experiencias cubanas”, en Desarrollo Alternativo A.C. Desal. 19: 41-26.

Tay, A. y Yang, S. (2001). “Extractive fermentation for lactic acid production from corn starch by immobilized cells of Rhizopus oryzae”, en Abstr Papers Am Chem Soc.

Villegas, P. (2000). Aprovechamiento de residuos fibrosos de la industria azucarera mediante procesos de conversión térmica. Tesis doctoral, Universidad Central de las Villas, Santa Clara.

Young-Jung, W., Jin-Nam, K., Jong-Sun, Y. y Hwa-Won, R. (2004). “Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis”, en Enzime Microb. Technol. 35: 568-573.

Downloads

Published

2011-05-31

How to Cite

Bustos-Vázquez, M. G., Cervantes-Martínez, J. E., García-Delgado, M., Rodríguez-Durán, N. A., & Compean-Ramírez, E. (2011). Sugar industry waste: an alternative for obtaining lactic acid. CienciaUAT, 5(4), 61-66. Retrieved from https://revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/84

Issue

Section

Biotechnology and Agricultural Sciences