Morphophysiological and genetic aspects to establish breeding programs in Moringa oleifera Lam

Authors

  • Yadiana Ontivero-Vasallo Instituto de Investigaciones de Pastos y Forrajes, Departamento de Especialistas e Investigación
  • Jahel Echeverría-Carracedo Instituto de Investigaciones de Pastos y Forrajes, Departamento de Especialistas e
  • Alejandro Palacios-Espinosa Universidad Autónoma de Baja California Sur, Departamento de Ciencia Animal y Conservación de Hábitat, km 5.5 carretera al sur, La Paz, Baja California Sur, México, C. P. 23080. https://orcid.org/0000-0002-4726-4164

DOI:

https://doi.org/10.29059/cienciauat.v16i2.1511

Keywords:

reproduction, resistance, genetics, selection

Abstract

Genetic improvement in plants can increase yield, productivity and resistance to stress by modifying the genotype of the progeny. The objective of the present work was to review selection criteria to support the implementation of breeding programs focused on yield and stress resistance. The pollination is mainly open, which makes it difficult to maintain the improvements in its genotype. It is advisable to establish crosses between specimens with superior characteristics. The main characters that show diversity and should be used as selection criteria are the trunk diameter, number of flowers per inflorescence, fruit length and weight, although also some foliar characteristics could constitute a positive selection criterion. AFLP, RAPD, SSR and cytochrome P450 markers have been used to study its genetic variability. Morphological criteria molecular markers are related and, therefore, complement each other. The major research gaps are related to the architecture of the root system, the pollen flow according to genotypes and resistance mechanisms against biotic stress.

References

Abud, M., Espinosa, A. K., González, T., Gutiérrez, V. F., Ruíz, V., González, D., …, and Gutiérrez, F. A. (2018). Growth and biochemical responses of moringa (Moringa oleifera L.) to vermicompost and phosphate rock under water stress conditions. Phyton. International Journal of Experimental Botany. 87: 209-215.

Aguilar, G. M. y Ramírez, W. (2015). Monitoreo a procesos de restauración ecológica, aplicado a ecosistemas terrestres. Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, en Repositorio Institucional de Documentación Científica. [En línea]. Disponible en: http://repository.humboldt.org.co/handle/20.500.11761/9281. Fecha de consulta: 19 de agosto de 2020.

Anwar, G. M. (2016). Studies of some cytological features on two moringa species (M. oleifera and M. stenopetala) cultivated in Egypt. Minia Journal of Agriculture Research & Development. 36(4): 601-611.

Anwar, F., Latif, S., Ashraf, M., and Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research. 21: 17-25.

Babiker, E. E., Juhaimi, F. A., Ghafoor, K., and Abdoun, K. A. (2017). Comparative study on feeding value of moringa leaves as a partial replacement for alfalfa hay in ewes and goats. Livestock Science. 195: 21-26.

Bennett, R. N., Mellon, F. A., Foild, N., Pratt, J. H., Dupont, M. S., Perkins, L., and Kroon, P. A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala L. Journal of Agricultural and Food Chemistry. 51(12): 3546-3553.

Cabrera, J. L., Jaramillo, C., Dután, F., Cun, J., García, P. A. y Rojas, L. (2017). Variación del contenido de alcaloides, fenoles, flavonoides y taninos en Moringa oleifera Lam en función de su edad y altura. Bioagro. 29(1): 53-60.

Caruso, G., Broglia, V. y Pocovi, M. (2015). Diversidad genética. Importancia y aplicaciones en el mejoramiento vegetal. Nuestro Entorno. 4(1): 45-50.

Casanova, F., Cetzal, W., Díaz, V., Chay, A., Ortega, I., Piñeiro, I. y González, N. (2018). “Moringa oleifera Lam. (Moringaceae): Árbol exótico con gran potencial para la ganadería ecológica en el trópico”. AgroProductividad. 11(2): 100-105.

Cui, X. H., Chen, J., Shen, J. S., Cao, X., Chen, X. H., and Zhu, X. L. (2011). Modeling tree root diameter and biomass by ground-penetrating radar. Science China Earth Science. 54(5): 711-719.

Deng, L. T., Wu, Y. L., Li, J. C., OuYang, K. X., Ding, M. M., Zhang, J. J., ..., and Chen, X. Y. (2016). Screening reliable reference genes for RT-qPCR analysis of gene-expression in Moringa oleifera. PLoS One. 11(8): 1-18.

Drisya-Ravi, R. S., Nair, B. R., and Siril, E. A. (2021). Morphological diversity, phenotypic and genotypic variance and heritability estimates in Moringa oleifera Lam: a less used vegetable with substantial nutritional value. Genetic Resource Crop Evolution. 1-21.

Drisya-Ravi, R. S., Siril, E. A., and Nair, B. R. (2020). The efficiency of Cytochrome P450 gene-based markers in accessing genetic variability of drumstick (Moringa oleifera Lam.) accessions, en Molecular Biology Reports. [En línea]. Disponible en: https://link.springer.com/article/10.1007%2Fs11033-020-05391-w. Fecha de consulta: 25 de agosto de 2020.

Fátima, N., Akram, M., Shahid, M., Abbas, G., Hussain, M., Nafees, M., …, and Amjad, M. (2018). Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. Journal of Plant Nutrition. 41(12): 1555-1565.

Frankham, R., Briscoe, D. A., and Ballou, J. D. (2002). Introduction to conservation genetics. Cambridge: Cambridge University Press. 60 Pp.

Gimelfarb, A. and Lande, R. (1994). Simulation of marker assisted selection for non-additive traits. Genetics Research. 64(2): 127-136.

Hassanei, A. M. A. and Al‑Soqeer, A. A. (2018). Morphological and genetic diversity of Moringa oleifera and Moringa peregrine genotypes. Horticulture, Environment, and Biotechnology. [En línea]. Disponible en: https://link.springer.com/article/10.1007%2Fs13580-018-0024-0. Fecha de consulta: 21de febrero de 2021.

Jyothi, P. V., Atluri, J. B., and Subba, C. (1990). Pollination ecology of Moringa oleifera (Moringaceae). Proc. Indian Academy of Science (Plant Science). 100(1): 33-42.

Karunakar, J., Preethi, T. L., Boopat, N. M., Pugalendhi, L., and Hepziba, S. J. (2018). Genetic variability, correlation and path analysis in Moringa (Moringa oleifera L.). Journal of Pharmacognosy and Phytochemistry. 7(5): 3379-3382.

Kleden, M. M., Soetanto, H., Kusmartono, K., and Kuswanto, K. (2017). Genetic diversity evaluation of Moringa oleifera, Lam from East Flores Regency using marker Random Amplified Polymorphic DNA (RAPD) and its relationship to chemical composition and in vitro gas production. AGRIVITA Journal of Agricultural Science. 39(2): 219-231.

Krieg, J., Goetze, D., Porembski, S., Arnold, P., Linsenmair, K. E., and Stein, K. (2017). Floral and reproductive biology of Moringa oleifera (Moringaceae) in Burkina Faso, West Africa, in Acta Horticulturae. [En línea]. Disponible en: https://www.actahort.org/books/1158/1158_8.htm. Fecha de consulta: 11 de febrero de 2020.

Kurian, A. J., Anitha, P., and Pradeepkumar, T. (2020). Genetic divergence studies in drumstick (Moringa oleifera Lam.). Journal of Tropical Agriculture. 58(2): 158-167.

Lamz, A. y González, M. C. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales. 34(4): 31-42.

Ledea, J. L., Benítez, D. G. y Rosell, G. (2018). Evaluación del cultivo de la Moringa oleifera. Experiencias agronómicas en el oriente de Cuba. España: Editorial Académica Española. 53 Pp.

Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., and Bertoli, S. (2015). Cultivation, genetic, ethnophar-macology, phytochemistry and pharmacology of Moringa oleifera Leaves: An Overview. International Journal of Molecular Sciences. 16(6): 12791-12835.

Lin, M., Jia, R., Li, J., Zhang, M., Chen, H., Zhang, D., ..., and Chen, X. (2018). Evolution and expression patterns of the trehalose-6-phosphate synthase gene family in drumstick (Moringa oleifera Lam.), in Planta. [En línea]. Disponible en: https://link.springer.com/article/10.1007/s00425-018-2945-3. Fecha de consulta: 12 de febrero de 2020.

Loo, J. A. (2011). Manual de Genética de la Conservación: Principios aplicados de genética para la conservación de la diversidad biológica, en Comisión Nacional Forestal. [En línea]. Disponible en: https://www.conafor.gob.mx/bibl. Fecha de consulta: 11 de marzo de 2020.

Martínez, E., Cantillo, T. y García, D. (2013). Micobiota asociada a lotes importados de semillas de moringa (Moringa oleifera). Fitosanidad. 17(3): 125-129.

Mgendi, M., Manoko, M., and Nyomora, A. (2010). Genetic diversity between cultivated and non-cultivated Moringa oleifera Lam. provenances assessed by RAPD markers. Journal of Cell and Molecular Biology. 8: 95-102.

Mooney, S. J., Pridmore, T. P., Helliwell, J., and Bennett, M. J. (2012). Developing X-ray computed tomography to noninvasively image 3-D root systems architecture in soil. Plant Soil. 352(1): 1-22.

Mridha, M. A. U. and Barakah, F. N. (2017). Diseases and pests of moringa: a mini review. Acta Horticulturae. 1158: 117-124.

Muluvi, G. M., Sprent, J. I., Odee, D., and Powell, W. (2004). Estimates of outcrossing rates in Moringa oleifera using Amplified fragment length polymorphism (AFLP). African Journal of Biotechnolgy. 3(2): 146-151.

Nason, J. D. and Hamrick, J. L. (1997). Reproductive and genetic consequences of forest fragmentation: two case studies of neotropical canopy trees. Journal of Heredity. 88: 264-276.

Nora, S., Albaladejo, R. G., González-Martínez, S. C., Robledo-Arnuncio, J. J. y Aparicio, A. (2011). Movimiento de genes (polen y semillas) en poblaciones fragmentadas de plantas. Ecosistemas. 20(2-3): 35-45.

Nouman, W., Siddiqui, M. T., Basra, S. M. A., Khan, R. A., Gull, T., Olson, M. E., and Munir, H. (2012). Response of Moringa oleifera to saline conditions. International Journal of Agriculture and Biology. 14: 757-762.

Oliveira, F. R. A., Oliveira, F. A., Guimaraes, I. P., Medeiros, J. F., Oliveira, M. K. T., Freitas, A. V. L., and Medeiros, M. A. (2009). Emergency of seedlings of Moringa oleifera Lam. irrigated with water of different levels of salinity. Bioscience. 25(5): 66-74.

Ontivero, Y., García, D., and Loiret, F. G. (2021). Evaluation of the effect of two substrates on the development of Moringa oleifera Lam (Fam: Moringaceae) (moringa) under nursery conditions. Cuban Journal of Agricultural Science. 55(2): 1-11.

Padilla, C., Valenciaga, N., Crespo, G., González, D. y Rodríguez, I. (2017). Requerimientos agronómicos de Moringa oleifera (Lam.) en sistemas ganaderos. Livestock Research for Rural Develpment. 29(11).

Panwar, A. and Mathur, J. (2020). Genetic and biochemical variability among Moringa oleifera Lam. accessions collected from different agro-ecological zones. Genome. 63(3): 169-177.

Patricio, H. G. and Palada, M. C. (2017). Adaptability and horticultural characterization of different moringa accessions in Central Philippines. Acta Hortic. 45-53.

Pérez, A., Sánchez, T., Armengol, N. y Reyes, F. (2010). Características y potencialidades de Moringa oleifera, Lamark. Una alternativa para la alimentación animal. Pastos y Forrajes. 33(4): 1-1.

Popoola, J. O., Bello, O. A., and Obembe, O. O. (2016). Phenotypic intraspecific variability among some accessions of drumstick (Moringa oleifera Lam.). Canadian Journal of Pure and Applied Sciences. 10(1): 3681-3693.

Popoola, J. O., Oluyisola, B. O., and Obembe, O. O. (2014). Genetic diversity in Moringa oleifera from Nigeria using fruit morpho-metric characters & random amplified polymorphic DNA (RAPD) markers. Covenant Journal of Physical and Life Sciences. 1(2): 43-60.

Raja, S. (2013). Mejora de la baqueta (Moringa oleifera Lamk) para ecosistemas semiáridos y áridos: Análisis de estabilidad ambiental para rendimiento. Revista de Fitomejoramiento y Ciencia de Cultivos. 5(8): 164-170.

Rajalakshmi, R., Rajalakshmi, S., and Parida, A. (2017). Evaluation of the genetic diversity and population structure in drumstick (Moringa oleifera L.) using SSR markers. Current Science. 112(6): 1250-1256.

Resmi, D. S, Celine, V. A., and Rajamony, L. (2005). Variability among drumstick (Moringa oleifera Lam.) accessions from central and southern Kerala. Journal of Tropical Agriculture. 43(1-2): 83-85.

Rimieri, P. (2017). La diversidad genética y la variabilidad genética: dos conceptos diferentes asociados al germoplasma y al mejoramiento genético vegetal. Journal of Basic Applied Genetics. 28(2): 7-13.

Rivas, R., Oliveira, M. T., and Santos, M. G. (2013). Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance. Plant Physiology and Biochemistry. 63: 200-208.

Rufai, S., Hanafi, M. M., Rafii, M. Y., Ahmad, S., Arolu, I. W., and Ferdous, J. (2013). Genetic dissection of new genotypes of drumstick tree (Moringa oleifera Lam.) using random amplified polymorphic DNA marker, in BioMed Research International. [En línea]. Disponible en: https://www.hindawi.com/journals/bmri/2013/604598/. Fecha de consulta: 5 de mayo de 2021.

Seck, W., Torkamaneh, D., and Belzile, F. (2020). Comprehensive genome-wide association analysis reveals the genetic basis of root system architecture in soybean. Frontiers in Plant Science. 11: 1955.

Selvakumari, P. and Ponnuswami V. (2017). Correlation and genetic variation of thirty four different genotypes of moringa (Moringa oleifera, Lam.) in Tamil Nadu Condition, India. International Journal of Current Microbiology and Applied Sciences. 6(8): 332-335.

Seo, D. H., Seomun, S., Choi, Y. D., and Jang, G. (2020). Root development and stress tolerance in rice: the key to improving stress tolerance without yield penalties. International Journal of Molecular Science. 21(5): 1-13.

Silva, R., Filgueiras, L., Santos, B., Coelho, M., Silva, M., Estrada-Bonilla, G., …, and Meneses, C. (2020). Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa L. growing under water stress. International Journal of Molecular Science. 21(333): 1-20.

Staub, J. E., Serquen, F. C., and Gupta, M. (1996). Genetic markers, map construction, and their application in plant breeding. HortScience. 31(5): 729-741.

Suárez, H. J., Menéndez, A., Atecio, R. y Delgado, I. (2018). Selección de genotipos de caña de azúcar en áreas con estrés ambiental. Revista Centro Agrícola. 45(3): 66-72.

Tian, Y., Zeng, Y., Zhang, J., Yang, C., Yan, L., Wang, X. J., …, and Sheng, J. (2015). High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Science China Life Sciences. 58(7): 627-638.

Vallejo, J., Badilla, Y., Picado, F. y Murillo, O. (2010). Metodología para la selección e incorporación de árboles plus en programas de mejoramiento genético forestal. Agronomía. Costarricense. 34(1): 105-119.

Wu, J. C., Yang, J. Gu, Z. J., and Zhang, Y. P. (2010). Isolation and characterization of twenty polymorphic microsatellite loci for Moringa oleifera (Moringaceae). HortScience. 45(4): 690-692.

Wu, J. C., Zhang, Y. P., Zheng, Y. X., and Peng, X. M. (2018). Pollen mediated gene flow in a small experimental population of Moringa oleifera Lam. (Moringaceae). Industrial Crops and Products. 117: 28-33.

Zhang, J., Yang, E., He, Q., Lin, M., Zhou, W., Pian, R., and Chen, X. (2019). Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam.). [En línea]. Disponible en: https://peerj.com/articles/7063/. Fecha de consulta: 31 de agosto de 2020.

Published

2022-01-31

How to Cite

Ontivero-Vasallo, Y., Echeverría-Carracedo, J., & Palacios-Espinosa, A. . (2022). Morphophysiological and genetic aspects to establish breeding programs in Moringa oleifera Lam. CienciaUAT, 16(2), 172-180. https://doi.org/10.29059/cienciauat.v16i2.1511

Issue

Section

Biotechnology and Agricultural Sciences