Forthcoming

Wound healing effect induced by Mangifera indica var. manila proteins in human fibroblast

Authors

  • Gloria Barrera-Morales Universidad Veracruzana, Instituto de Ciencias Básicas, Xalapa, Veracruz, México, C. P. 91190. / Universidad Autónoma de Tlaxcala, Centro Tlaxcala Biología de la Conducta, Tlaxcala, Tlaxcala, México, C. P. 90070. https://orcid.org/0000-0001-7090-4601
  • Alma Vázquez-Luna Universidad Veracruzana, Instituto de Ciencias Básicas, Xalapa, Veracruz, México, C. P. 91190. https://orcid.org/0000-0001-5648-7549
  • Leticia Nicolás-Toledo Universidad Autónoma de Tlaxcala, Centro Tlaxcala Biología de la Conducta, Tlaxcala, Tlaxcala, México, C. P. 90070. https://orcid.org/0000-0001-5022-2339
  • Yessica Eduviges Zamudio-Cuevas Instituto Nacional de Rehabilitación "Luis Guillermo lbarra lbarra", Laboratorio de Líquido Sinovial, Calzada México-Xochimilco núm. 289, col. Arenal de Guadalupe, Tlalpan, Ciudad de México, México, C. P. 14389. https://orcid.org/0000-0003-1751-3454

DOI:

https://doi.org/10.29059/cienciauat.v20i1.1972

Keywords:

wound healing, human fibroblasts, mango proteins, cell migration, essay wound scar

Abstract

Ayurvedic medicine has reported the use of Mangifera indica L (mango) to heal wounds caused by stings and bites from certain animals. The aim of this study was to evaluate the healing effects of mango proteins in vitro in a wound scar model in human fibroblasts. The total proteins from mango pulp were isolated and quantified using the Bradford method and subsequently the samples were lyophilized and quantified by BCA. SDS-PAGE electrophoresis was used for the separation and identification of the protein fractions. Assays to determine protein cytotoxicity were performed by quantifying fibroblast viability at different protein concentrations (0.25 mg/mL, 2.5 mg/mL, and 25 mg/mL). The scratch wound assay was carried out through scraping the fibroblast culture, with wound length being measured via microscopy after treatment with the different protein concentrations at 24 h, and 48 h and the percentage of wound closure being calculated. The isolated mango proteins had a molecular weight between 10 kDa and 95 kDa and similar to the control (P < 0.05) they did not induce cytotoxicity or morphological changes in fibroblasts at the concentrations used. The treatment using a 0.25 mg/mL protein suggests an increase in fibroblast migration that could favor wound closure.

References

Chen, T., Kunnavatana, S. S., & Koch, R. J. (2006). Effects of mitomycin-C on normal dermal fibroblasts. The Laryngoscope, 116(4), 514-517.

Conejero, L., Higaki, Y., Baeza, M. L., Fernández, M., Varela-Nieto, I., & Zubeldia, J. M. (2007). Pollen-induced airway inflammation, hyper-responsiveness and apoptosis in a murine model of allergy. Clinical & Experimental Allergy, 37(3), 331-338. https://doi.org/10.1111/j.1365-2222.2007.02660.x

Delahunty, C. & Yates III, J. R. (2005). Protein identification using 2d-lc-ms/ms. Methods, 35(3), 248-255. https://doi.org/10.1016/j.ymeth.2004.08.016

Espinosa-Espinosa, L., Garduño-Siciliano, L., Rodriguez-Canales, M., Hernandez-Portilla, L. B., Canales-Martinez, M. M., & Rodriguez-Monroy, M. A. (2022). The wound healing effect of mango peel extract on incision wounds in a murine model. Molecules, 27(1), 259.

Fernández-Guarino, M., Hernández-Bule, M. L., & Bacci, S. (2023). Cellular and molecular processes in wound healing. Biomedicines, 11(9), 2526.

Flick, D. A. & Gifford, G. E. (1984). Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. Journal of Immunological Methods, 68(1-2), 167-175.

Fu, J., Liu, B., Zhang, H., Fu, F., Yang, X., Fan, L., & Zhang, S. (2022). The role of cell division controls protein 42 in tumor and non-tumor diseases: a systematic review. Journal of Cancer, 13(3), 800-814. https://doi.org/10.7150/jca.65415

Fujii, Y., Kamata, K., Gerdol, M., Hasan, I., Rajia, S., Kawsar, S. M., Padma, S., Chatterjee, B. P., Oh-kawa, M., Ishiwata, R., Yoshimot, S., Yamada, M., Matsuzaki, N., Yamada, M., Yamamoto, K., Niimi, Y., Miyanishi, N., Konno, M., ..., & Fujita, H. (2024). Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype. Marine Drugs, 22(6), 269.

Gibbon, C. B., Ren, H., & Staiger, J. C. (1997). Characterization of maize (Zea mays) pollen profilin function in vitro and in live cells. Biochemical Journal, 327(3), 909-915.

Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z., & Falanga, V. (2017). Research techniques made simple: analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 137(2), e11-e16. https://doi.org/10.1016/J.JID.2016.11.020

Greening, D. W. & Simpson, R. J. (2010). A centrifugal ultrafiltration strategy for isolating the low-molecular weight (≤ 25 K) component of human plasma proteome. Journal of Proteomics, 73(3), 637-648. https://doi.org/10.1016/j.jprot.2009.09.013.

Gupta, S., Patel, L., Mitra, K., & Bit, A. (2022). Fibroblast Derived Skin Wound Healing Modeling on Chip under the Influence of Micro-Capillary Shear Stress. Micromachines 2022, 13(305), 1-22.

Herbert-Doctor, L. A., Coutiño-Rodríguez, E. M. R., Palmeros-Sánchez, B., & Sampieri, R. C. L. (2017). Necrotic and Apoptotic Activity of the Protein Extract from Mesocarp in Human Lymphocytes in Culture. ECORFAN-Bolivia Journal, 4(6), 28-47.

Hofmann, E., Fink, J., Pignet, A. L., Schwarz, A., Schellnegger, M., Nischwitz, S. P., & Kotzbeck, P. (2023). Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines, 11(4), 1056. https://doi.org/10.3390/biomedicines11041056

Huerta, M., Franco-Serrano, L., Amela, I., Perez-Pons, J. A., Piñol, J., Mozo-Villarías, A., & Cedano, J. (2023). Role of moonlighting proteins in disease: analyzing the contribution of canonical and moon-lighting functions in disease progression. Cells, 12(2), 235.

Kopeckova, M., Pavkova, I., & Stulik, J. (2020). Diverse localization and protein binding abilities of glyceraldehyde-3-phosphate dehydrogenase in pathogenic bacteria: the key to its multifunctiona-lity. Frontiers in Cellular and Infection Microbiology, 10(89), 1-7. https://doi.org/10.3389/fcimb.2020.00089

Krebs, A., Nyffeler, J., Rahnenführer, J., & Leist, M. (2018). Normalization of data for viability and relative cell function curves. Alternatives to Animal Experimentation: ALTEX, 35, 268-271. https://doi.org/10.14573/1803231

Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299.

Lenucci, M. S., Tornese, R., Mita, G., & Durante, M. (2022). Bioactive compounds and antioxidant activities in different fractions of mango fruits (Mangifera indica L., cultivar Tommy Atkins and Keitt). Antioxidants, 11(3), 484: 1-21. https://doi.org/10.3390/antiox11030484

Lin, P., Zhang, G., & Li, H. (2023). The Role of Extracellular Matrix in Wound Healing. Dermatologic Surgery, 49(5S), S41-S48.

López-Macay, A., Montes-Sánchez, D., Narváez-Morales, J., Salas-Paniagua, M., Barrios-Aguilar, S., Zamudio-Cuevas, Y., Fernández-Torres, J. y Martínez, K. (2024). Explorando algunas técnicas proteómicas: Western blot, Dot blot y electroforesis bidimensional complementada con espectrometría de masas. Investigación en Discapacidad, 10(3), 187-202.

Marquínez, E. Y. L., Ortega, J. G., Morán, J. M., Campana, W. N. y Figueroa, T. F. (2023). Situación actual y perspectivas del cultivo de mango (Mangifera indica l.) en el Sur de Manabi, Ecuador. Revista UNESUM-Ciencias, 7(1), 156-172.

Nuevo, J. J. M. & Bernardino, E. R. K. (2013). The effect of Mangifera indica (Mango) leaf crude extract in the wound healing properties of Rattus norvegicus (Sprague Dawley). Fatima University Research Journal, 5(1), 1-1.

Ousey, K., Chadwick, P., Jawień, A., Tariq, G., Nair, H. K. R., Lázaro-Martínez, J. L., & Moore, Z. (2018). Identifying and treating foot ulcers in patients with diabetes: saving feet, legs and lives. Journal of Wound Care, 27(Sup5), S1-S52. https://doi.org/10.12968/jowc.2018.27.Sup5.S1

Patil, R., Kale, A. D., Mane, D. R., & Patil, D. (2020). Isolation, culture and characterization of primary cell lines of human buccal mucosal fibroblasts: A combination of explant enzamytic technique. Journal of Oral and Maxillofacial Pathology, 24(1), 68-75. https://doi.org/10.4103/jomfp.JOMFP_282_19

Pal, R., Mamidi, M. K., Das, A. K., & Bhonde, R. (2012). Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Archives of Toxicology, 86, 651-661

Pithayanukul, P., Leanpolchareanchai, J., & Saparpakorn, P. (2009). Molecular docking studies and anti−snake venom metalloproteinase activity of Thai mango seed kernel extract. Molecules, 14(9), 3198-3213. https://doi.org/10.3390/molecules14093198

Punjataewakupt, A., Napavichayanun, S., & Aramwit, P. (2019). The downside of antimicrobial agents for wound healing. European Journal of Clinical Microbiology & Infectious Diseases, 38, 39-54.

Quintana, S. E., Salas, S., & García-Zapateiro, L. A. (2021). Bioactive compounds of mango (Mangifera indica): A review of extraction technologies and chemical constituents. Journal of the Science of Food and Agriculture, 101(15), 6186-6192. https://doi.org/10.1002/jsfa.1145

Rajasekaran, A. & Soundarapandian, S. (2023). Nutritional and medicinal values of Mangifera indica L. fruit. Trends in Horticulture, 6(2), 1-12. https://doi.org/10.24294/th.v6i2.2949

Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S., & Saparov, A. (2021). Immunology of acute and chronic wound healing. Biomolecules, 11(5), 1-25. https://doi.org/10.3390/biom11050700

Shah, K. A., Patel, M. B., Patel, R. J., & Parmar, P. K. (2010). Mangifera indica (mango). Pharmacognosy Reviews, 4(7), 42-48. https://doi.org/10.4103/0973-7847.65325

Suhatri, S., Fidiyani, D., Azzahra, N., & Suardi, M. (2022). Effectiveness of Mango Leaf Extract (Mangifera indica L) on Healing of Second Level Cut Wound in Male White Mice (Mus musculus). Journal Kesehatan Terapan, 9(2), 7-12. https://doi.org/10.54816/jk.v9i2.520

Suraneni, P., Rubinstein, B., Unruh, J. R., Durnin, M., Hanein, D., & Li, R. (2012). The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. Journal of Cell Biology, 197(2), 239-251. https://doi.org/10.1083/jcb.201112113

Sushanth, K. A., Lakshmi, K. C., & Reddy, D. S. (2016). Evaluation of wound healing activity with a new formulation of dry Mangifera indica and honey using swiss albino mice. Asian Journal of Pharmaceutical and Clinical Research, 139-142.

Tristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH: views from different subcellular compartments. Cellular Signalling, 23(2), 317-323.

Tsai, W. C., Yin, H. Y., Chen, S. N., Chang, H. C., & Wen, H. W. (2021). Development of monoclonal antibody-based sandwich ELISA for detecting major mango allergen Man i1 in processed foods. Journal of Food Safety, 41(2), e12884.

Wang, J., Li, Y., Pan, L., Li, J., Yu, Y., Liu, B., & Xiong, Q. (2021). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Veterinary Research, 52(1), 1-14. https://doi.org/10.1186/s13567-021-00952-8

Wei, F., Zhao, L., & Jing, Y. (2020). Mechanisms underlying dimethyl sulfoxide-induced cellular migration in human normal hepatic cells. Environmental Toxicology and Pharmacology, 80, 103489.

Wu, C. C., Lin, C. C., Yin, H. Y., Tsai, W. C., Yang, P. F., Liu, H. J., & Wen, H. W. (2024). Rapid detection of mango allergen in processed foods using an immunomagnetic nanoparticle-based electrochemical immunosensor. Microchemical Journal, 110070: 1-16.

Zheng, S., Qin, F., Yin, J., Li, D., Huang, Y., Hu, L., & Hu, W. (2023). Role and mechanism of actin-related protein 2/3 complex signaling in cancer invasion and metastasis: A review. Medicine, 102(14), 1-8.

Zhou, C., Ludmila, T., Sun, N., Wang, C., Pu, Q., Huang, K., & Che, H. (2016). BALB/c mice can be used to evaluate allergenicity of different food protein extracts. Food and Agricultural Immunology, 27(5), 589-603.

Published

2025-06-06

How to Cite

Barrera-Morales, G., Vázquez-Luna, A., Nicolás-Toledo, L., & Zamudio-Cuevas, Y. E. (2025). Wound healing effect induced by Mangifera indica var. manila proteins in human fibroblast. CienciaUAT, 20(1). https://doi.org/10.29059/cienciauat.v20i1.1972
Received 2024-12-20
Accepted 2025-05-27
Published 2025-06-06

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.